
Vulnerability Detection in Recent Android Apps:
An Empirical Study

Faysal Hossain Shezan1, Syeda Farzia Afroze2, Anindya Iqbal 3

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

1faysalhossain2007@gmail.com, 2farziaa@gmail.com,3anindya@cse.buet.ac.bd

Abstract—With the continuous and rapid increase in quantity
and diversity of Smartphone application usage, the storage of
sensitive personal and even financial information of the users
is also being augmented. It creates motivation for developers of
malicious applications to put more effort on discovering ways
to identify and exploit the vulnerabilities of utility applica-
tions and grab the sensitive information of the users. Android
applications, being more open in nature and popular among
armature individual developers, fall victim to the malwares quite
frequently. Recently, the Govt. of Bangladesh has taken initiative
to encourage and patronize young developers to develop utility
apps for free public use in the context of Bangladesh (app
source: EATL1). While the motivation is great, i.e., benefiting
common people, the way these are developed and released have
reasons to suspect that recent vulnerabilities may exist due.
This may harm the users and ruin the good initiative. In this
paper, we have carried out an empirical study on a selected
set of these apps to detect eight common vulnerabilities. We
have carefully chosen three quality tools that cover testing of all
these vulnerabilities. We reported the detected results showing
vulnerabilities in the tested apps, presented statistics of the
vulnerabilities and discussed countermeasures. We believe this
study would benefit the developers and indirectly the potential
users of these applications.

Index Terms—Android Malware, Static Analysis, Dynamic
Analysis, Vulnerability, App security, Security testing.

I. INTRODUCTION

In modern days, with the rise of ubiquitous use of smart-
phones, the usage of different utility applications is growing
rapidly. Mobile devices are taking place of traditional PCs
by bringing convenience to people that was unthinkable even
a decade ago. The number of smart-phone users all over the
world was 1.5 billion in 2014 and is forecast to grow to around
2.5 billion in 2019 [1]. Over 36% of the world’s population is
projected to use a smart-phone by 2018, up from about 10%
percent in 2011. Android and iOS are the two most popular
Smartphone operating systems in the industry. Android, with
80% of market share has topped the list [1]. As of February
2016, Google Play Store contained 2 million apps [2].The
software designed to damage or do other unwanted actions on
a system are termed as malware. According to Lookout [3],
there is a 75% year-over-year increase in U.S. mobile malware
rates in 2014.

1http://www.eatlapps.com/

A beauty of mobile app development, especially in open
platform like Android, is that young developers with interest-
ing ideas may form small teams and develop apps and release
among a vast audience. The vulnerabilities cause from lack
of awareness of developers or inherent weakness of platform
used. These developers may not be cautious about all the
security risks and the practices to follow to avoid these. As
a result, these apps may become easy targets for malicious
sources. There are an enormous number of applications in Play
Store itself. These apps are not comprehensively tested for
malicious behavior or vulnerability when they are published,
making it an attractive target for the attackers [4]. There are
also third-party app-stores that barely perform any testing
while publishing apps. A user can thus end up with an app
vulnerable to malicious activities even after downloading it
from an apparently reliable source. Here lies the importance
of research on classification of these vulnerabilities, detecting
and providing countermeasure.

Due to the rise of smart phones and their apps, Government
of many countries are coming forward to develop applications
promoting health , travel, education, consumer price sharing,
information sharing etc. aimed for the usage by mass people.
To make the young generation interested in app development
and IT, Bangladesh Government has taken several campaigns,
workshops and competitions to develop such apps. In such
initiatives, the amateur or inexperienced developers are devel-
oping apps with innovative ideas. However, such development
process hardly has opportunity to be tested by security ex-
perts, unlike the scenario in established software development
companies. Again, these applications are aimed at mass people
of the country, who are also not conscious enough about the
security of their data. This results in an attractive entry point
for attackers to exploit; causing theft of private personal data
or government information. Our work is directed at finding
the vulnerabilities of recent Android apps and to find their
remedies, wherever possible.

We have noted some of the common vulnerabilities from
the recent literature. A number of works have found to be
on detecting SMS Malware attacks and preventing them.
According to a Survey by Kaspersky [5], 33.5% of all attacks
were Trojan-SMS attacks, resulting in unexpected charges on
user’s phone bill or being signed up for unexpected premium
services. They also point out that the older versions of Android
(versions 4.1.x and older) are at risk of being exploited by978-1-5090-3260-0/17/$31.00 c© 2017 IEEE

NSysS 2017.
Department of CSE, BUET. 5-8 January, 2017

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

scripts the download and execute malwares. These are known
issues and fixed in later versions of android. Hence, the apps
that support outdated Android versions are at the risk of
experiencing these attacks. Component Hijacking is another
vulnerability of recent android apps as identified in [6] . A
large number of work are also found to attack vulnerabilities
regarding Web-view in Android [7], [8] . Leem et. al. [9] has
proposed a simplified single process to detect most common
vulnerabilities in Android apps in his paper.

In this paper, we first discussed the causes and effects of
relevant weaknesses of Android apps, along with the ways
to eliminate them. Afterwards, we have chosen a number
of applications from the EATL app store and tested them
with a few well known testing tools. EATL app store is a
third party app store, aimed at promoting apps developed by
Bangladeshi developers. We have also checked vulnerabilities
in some popular Bangladeshi apps referred by Audacity2. We
have discovered that all of the chosen apps are vulnerable to
one or more threats that we tested.

We have chosen twenty nine apps from local app stores to
discover their vulnerabilities. We assumed these apps to be
more vulnerable because they are published in a local store.
These apps are free for use, and aimed at the mass people
of the country. The local app stores usually execute minimal
security tests while publishing apps, letting vulnerable or even
malicious apps to slip in sometimes. The chosen apps are
mostly from individual developers. Furthermore, we have tried
to maintain a wide range of diversity among the apps. Some
of the apps interact directly with the users, while some show
static data from either a remote server or local database. Some
support Webview, while others simply make use of activities
and intents to pass data. We have also tested 6 apps randomly
chosen from the most popular apps from the Google Playstore.

We have chosen three tools for testing the applications for
vulnerabilities. The reason for choosing them is that these
three tools cover extensively all the vulnerabilities that we
discuss in this paper. Two of these tools are open-source,
leaving out scope for future extension by us in case of
detecting other vulnerabilities. They are also popular tools,
free to use, and available for most operating systems.

The remainder of this paper is organized as follows.
Section II analyzes the research works that have been done
so far in this field. We have discussed the current form of
app vulnerabilities and made some classifications in section
III. We have picked three different tools based on certain
characteristics which is described in section IV. Finally the
results are given in section V, and section VI concludes the
paper.

II. RELATED WORK

According to OWASP (Open Web Application Security
Project), vulnerability is just like a hole in application that
allows attacker to cause damage to stack holders of an appli-
cation. It can be a design flaw or implementation bug. Once

2http://audacityit.com/android/bd-android-apps/

an attacker is able to find a vulnerability in an application and
determines how to access it, the attacker is likely to exploit
the vulnerability. These kinds of crimes mainly target the two
basic principles of app security which is Confidentiality and
Integrity of the resources. Around 90% of all vulnerabilities
are contained in application layer [10]. Here, we discuss some
[11]–[31] recent works that aim to detect the vulnerabilities.

A. Vulnerability Detection Techniques

Since security threats are increasing and cause serious dam-
age to the users, researchers are also working in numbers to de-
tect and prevent the malicious apps [11]–[16]. Detection tools
generate report and then applies Machine Learning anomaly
detectors to classify the collected data [17], [18]. Faruki et
al. discussed the Android security enforcement mechanisms
and threats to the existing security enforcements [19]. All the
malware growth timeline between 2010 and 2014 are noted in
this paper. Based on the analysis of available tools he proposed
a Hybrid Approach for analyzing android malware. Vidas et
al. [20] has explored Android security features to discover
loopholes and vulnerabilities. He has built taxonomy of attacks
on the Android OS. Based on this, he has also suggested on
the security properties modern mobile operating systems like
Android should possess.

Liang et al. [21] has categorized the threats and delineate
those.He divided the existing works into privacy protection
enhancement and privacy leakage detection sections.

B. Comparison of Static and Dynamic Analysis

Security vulnerability issues caused codes interaction with
other system components like SQL databases, Web services
or application servers are detected by Dynamic analysis.
Combining both analysis should cover 95%of the flaws.

Chex et al. built a static analyzer, Dalysis which performs
on android bytecode [22]. Based on that framework and
considering current app vulnerabilities they designed a static
analyzer CHEX. It automatically detects multiple entry points
in Android app in an efficient and accurate way. Yang et al.
[23] presents an app validation framework named App Intent
that extracts app inputs that represent user interactions in an
acceptable amount of time to determine if data transmission
from an app is indeed intended by the user. Schmer et al.
[24] describes an approach using a combination of static
analysis and run-time management, based on software archi-
tecture models, named Raindroid, that can improve security
along with maintaining framework extendibility. It identifies
potentially vulnerable communication patterns, while adapting
the system to deny, allow or request permission from the user.
Several of the recent works feature the use of machine learning
on detecting vulnerabilities [25]–[31]. Yuan et al. proposed
Droid-Sec [26], an ML-based method making use of more
than 200 features extracted from static analysis and dynamic
analysis of apps. Draco , proposed by Bhandari et al. [25] is a
two-phase learning system, also blending static and dynamic
analysis. Canfora et al. suggested a malware detection method

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

in [27] by applying learning techniques on specific system-call
sequences.

III. DISCUSSION ON APP VULNERABILITIES

In many cases attackers may get information from user
device through the app. There are some features that need
to be protected. App vulnerability checker software searches
for such privileges that are permitted in the app.

1) Vulnerability in Storage Access
Android provides several options to store data from

the apps locally such as Shared Preferences, SQLite
Database, External storage, and Internal storage.

Files created by an app in internal storage
are accessible only to that app. Android has
implemented this protection of data storage which
works sufficiently in most cases. However, sometimes
developers use MODE WORLD READBALE and
MODE WORLD WRITABLE so that some other
particular app can access them. This renders the
files accessible to malicious apps too; which might
result in security breach. A solution to this can
be avoiding MODE WORLD READBALE and
MODE WORLD WRITABLE or hardcoded private
data such as encryption or decryption keys, and adding
an extra layer of encryption.

Some apps write files to the external storage. Files cre-
ated on external storage are readable and writable. Thus
it is imprudent to save when the files contain important
and private data. All the important files and database file
should be stored in internal storage. Then attacker will
find it difficult to get access to those important files.
While reading data from external storage, it is advisable
to perform input validation. Executables or class files
should not be saved in or retrieved from external storage,
and if such a need arises, these executable should be
encrypted and cryptographically verified. Even the Shared
Preferences and local SQLite databases become accessi-
ble when the device is rooted. Therefore, in case of theft
of phone, sensitive data stored in these data storage may
fall into wrong hands.

Data may be leaked from activities and intents while
they are saved as extras. These extras can be read from
anywhere unless an additional permission is added. If
private keys used by an app are saved in source code,
with no or minimal security measures taken, it can be
easily stolen or reverse engineered by malicious parties.

2) Attack in Webview
Android Webviews are not vulnerable by themselves.

For instance, Gmail app uses Webview to show emails
safely. The vulnerability of Webview depends on the
content that is shown in them. Viewing arbitrary third-
party content in Webview of an app may turn out to be
extremely harmful. In cases like these, browsers usually
sandbox the unreliable contents in a separate process.
However, since Webview is a single-process, it cannot
do so. It, therefore, grants access to malicious contents,

giving them same privilege that the app enjoys. Thus,
it is absolutely necessary to make sure that no third-
party content is being viewed from the Webview. In the
cases where allowing user-provided content is necessary,
only plain-text should be accepted, after sanitizing and
validating it.

Some key vulnerabilities of using Webviews are SQL
Injection, Cross-Site Scripting (XSS) and Insecure Direct
Object References [32], [33] . All of these are potentially
harmful attacks. An attacker can gain access to local
private files like shared preferences or send unwanted
SMS from the phone, in addition to stealing credentials.
Fig. 1 shows one such attack. These attacks can be
prevented by setting the setJavaScriptEnabled attribute to
false. If that is not possible, each context needs to be
escaped properly by using an XSS filter component.

Fig. 1. An example of exploiting Webview to send SMS messages [34]

When setAllowFileAccess attribute of a Webview is set
to be true, malicious attackers can inject harmful script in
it and exploit the chance of accessing local storage. This
can be avoided by setting the aforementioned attribute is
false while viewing third party content in Webview.

Last year, Google declared to end Webview extension
security support on Android versions Jelly Bean (4.1 -
4.3) and below [35]. This renders the apps supporting the
mentioned Android versions prone to Webview attacks.
Therefore it is obligatory for the developer to target the
most recent API level allowable for an app.

3) Android SQLite Databases Encryption
One of the most common places to store huge chunks

of local data in android is the SQLite database. It has
the ability to roll-back its actions in case of app-crash or
device crash. Even after these facilities, it is important
to remember that SQLite database stores its contents in
a usual file that can be infected by an attacker with
garbage values, or data can even be stolen. This may
happen when USB debugging is enabled or the device
is rooted. With debug mode enabled, SQLite data can
be easily retrieved either with ADB, or with DDMS
support of eclipse. A demonstration of such an exploit
is given in [36]. This vulnerability can cause identity

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

theft, damage to reputation, fraudulent activities using
attained data, external Policy Violation or financial loss.
A remedy to this is to add an extra layer of encryption
over the usual operative system provided encryption to
the database files. SQLite Encryption Extension (SEE),
an extension provided by SQLite Database, may be of
help in this aspect.

4) Checking Vulnerability of Intents
When an android app registers to receive implicit

intents from the Android OS, it is registered in such a
way that it receives any explicit intent too. In fact, Intent
spoofing vulnerability in Android apps is one of the most
common issues. A malicious app can send an explicit
intent to the target apps while the target app has no way
of knowing where the Intent came from. It will treat the
malicious app as a trusted one, thus providing a break
point to the harmful intent.

An application can be registered to receive broadcasts
occurred by system events such as BOOT COMPLETE,
SMS RECEIVED, BATTERY LOW, or it can also gener-
ate custom broadcast intents for which a receiver can be
registered. If the developer doesnt impose some control
on who can broadcast and who cannot, harmful apps from
untrustworthy sources may be able to spoof broadcasts
that are received by the app, causing serious risk. [37]
shows an example of exploiting broadcast intents.

Sticky Intents linger in system for future broadcast lis-
teners. Sticky intents stay alive even when the application
is reinstalled and doesn’t get remove until the device is
restarted. If this is not used carefully by the developer, it
might cause security risk.

5) Analyzing Advertisement Module
Third-party advertising tools, also known as ad-tech,

help companies leverage their intent data, which forms
the foundation of conversion.

There are three types of digital data: search, interest
and intent. Intent data is collected by e-commerce and
price comparison companies studying what happens on
their sites. A malicious ad-tech may be able to steal data
this way if the developer is not careful.

Some malwares function by repackaging legitimate
apps from the Google Play store with harmful adware,
and then releasing them to a third-party store. Since
after repackaging, the app remains fully functional, these
malwares become hard to detect. Now, when the user
downloads this app from the third party store, the hacker
can easily access his sensitive data.

6) Checking for apps supporting outdated API versions
and Sensitive API

According to Duo Security [38], More than 90% of
Android devices are running out-dated versions (4.0 and
below) of the operating system. Since Google doesn’t
provide support for many features of these outdated API
versions, these devices become an appealing prey for
the hackers. Thus, adding backward compatibility for
older API-versions that are not supported by Android

can be a threat to the application. It might allow a
developer to make use of deprecated packages that may
have catastrophic result for security of the app.

7) Monitoring SMS and Phone call
SMS malwares are one of the most common types

of malwares of recent days [39]. In malicious exploits
like Stagefright, discovered in 2015, a hacker creates
a short video, hiding the malware inside it. He then
texts it to the phone numbers of his prey in form of
MMS. As soon as it’s received by the target, it completes
initial processing, triggering the vulnerability. When this
is successful, attacker can have full control over the
device, from copying sensitive data to taking control of
camera and camera and microphone of the device.

Sometimes malicious third party scripts may trigger
unwanted messages or calls transferring sensitive data or
adding a premium service, causing a rise in phone bill.
Harmful apps from unreliable sources may also modify
sms and call settings.

8) Attack in Android Debug Mode
Android supports a BuildConfig.DEBUG attribute

from in manifest file from SDK Tools version 17 to
enable debugging the app when connected to a computer
during the development phase. Debug mode allows a
developer to transfer data both ways between a computer
and device, read log cat data easily, debug application,
rapid installation and uninstallation of apps, and accessing
a stripped-down shell on the device for command-line
interaction. However, a released app should have this
attribute turned off. Otherwise, when plugged into an
untrusted computer, all the private data becomes available
to the attacker.

IV. DISCUSSION ON TOOLS USED

There are lots of tools available for detecting malware and
vulnerabilities in android app. Their main purposes are:

• Testing for overall app security
• Assessment and analysis
• Data leakage detection
App Security assessment solutions determine the vulnera-

bilities, which if exploited, can be harmful to the user and
device security. Analysis based solutions detect the malicious
behavior within the apps, and the detection solutions aim to
prevent the on-device installation. To achieve these steps, static
analysis or dynamic analysis can be performed.

There are mainly two type of analysis done by each tools,
i.e. Static Analysis and Dynamic Analysis. In static analysis,
the app is first installed in the emulator and then it extracts
the app data. Then it analyzes the data and generates the first
report of the app. Dynamic analysis process starts as soon as
the static analysis ends. Dynamic analysis process includes
decompiling apk and parse decompiled files. It then analyzes
the data and generate the second report. When the static and
dynamic reports are generated, it merges them in a single
report and show the full analysis report on a particular tested
app.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Working Process of Vulnerability Detection Tools

TABLE I
TESTS SUPPORTED BY TOOLS

Vulnerability AndroBugs SandDroid Qark
Vulnerability in Storage Access X X X

Attack in Webview X × X
Android SQLite Databases

Encryption X × ×

Checking Vulnerability of
Intents × × X

Analyzing Advertisement
Module × X ×

Checking,for,apps,supporting,
outdated,API,versions and

Sensitive API
X X X

Monitoring SMS and Phone call X X ×
Attack in Android Debug Mode X × X

We have used three tools and frameworks to detect vulner-
abilities in our selected android apps. These three tools detect
all the vulnerabilities that we are searching for in android
applications. A comparison of supported tests by these tools
is presented in Table I. A short overview of these three tools
is presented below:

A. AndroBugs

AndroBugs [40] is a well-known test tool for checking vul-
nerabilities of android app. The Key features of this framework
are as follows.

• Checking the existence of flaw in coding
• Dangerous shell commands detection (e.g. s̈u)̈
• Check security protection of an app
• Testing how the app connects with the cloud
AndroBugs has found some security vulnerabilities issues

in some of the popular app.

B. SandDroid

SandDroid is another automatic Android application anal-
ysis system. It works fully online. The apk file needs to be
uploaded at their website [41], where a number of tests are
run in their sandbox environment to perform static, dynamic
and comprehensive analysis.

The Static Analysis of SandDroid comprises of more than 8
types of analysis. Basic information extraction is used for ex-
tracting the basic application information like file size, package
name, file hash, SDK version etc. Certification analysis parses
certification to check if its from Android Open Source Project

(AOSP) [42]. Category analysis classifies apks depending on
permissions. Permission analysis extracts declared permissions
and detects if they are actually used in the app or not.
Component analysis lists all components of the app including
Broadcast Receivers. It also checks whether the component is
exported. Advertisement module analysis extracts all adver-
tising modules and Sensitive API analysis lists all sensitive
API’s and the caller code path.

SandDroid has a rich set of Dynamic analysis tools. It
records all network data during an app’s running period,
recovers data from http flow, IP distribution analysis, based
on extraction of URLs and parsed IP data. File path and data
is recorded by File operation monitor. Sandroid also records all
sent SMS and phone calls by the app recording the SMS block
behavior. Sandroid also contains Crypto operation monitor
and data leakage monitor. Comprehensive analysis contains
scores based on level of risk of application according to the
static and dynamic analysis result. SandDroid generates a risky
Behaviors Summary, listing all risky behaviors of apps.

C. QARK

Quick Android Review Kit, also known as QARK [43], is
a static code analysis tool, designed to recognize potential
security vulnerabilities and points of concern for Android
applications. It looks for these vulnerabilities, either in source
code or packaged APKs. It is an open source tool by LinkedIn
[44], released at DefCon 23 and BlackHat USA 2015. The
tool is also capable of creating ”Proof-of-Concept” deployable
APKs and/or ADB commands and exploiting many of the
vulnerabilities it finds. While decompiling APKs, it automates
use of several decompilers, producing a superior result to usual
single decompiler results.

The set of vulnerabilities that QARK endeavors to find
includes negligently exported components, intents vulnerable
to interception or eavesdropping, inadequate validation of
x.509 certificate, usage of sticky intents, creation and usage
of world-readable or world-writeable files, activities prone to
leak data. It also finds pending intents with unsafe creation,
broadcast intents that are sent insecurely, private keys embed-
ded in the source code and evaluates the used cryptography
modules, potentially exploitable Webview configurations. It
checks whether apps enable backup, or are debuggable, or
support outdated API versions with known vulnerabilities.

V. RESULT AND DISCUSSION

We have tested twenty selected android applications from
EATL app store with the selected tools. Some of the selected
apps behave responsively according to the user’s input, while
some show informative data from either a remote server or
local database. One of the selected apps, Bikalpa Pusti, is an
informative app, giving a statistical data on the food calories.
Another app, Learn HTML, is a tutorial app which helps to
learn HTML code. Bangla Alphabet teaches children bangla
alphabet with images. Bank Info shows the bank location and
information. Personal Budget and Money Calculator calculates
credit and debit money. Baishakh Cam customizes pictures

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

with baishakhi themes. Rickshaw Race Dhaka is an interesting
game where one needs to race on Dhaka streets with a
rickshaw. EatlStore, is an appstore where all the selected
android apps can be found, is in our selected list. Exploring
Bangladesh shows some interesting and historical places of
Bangladesh, while Shadhinota26 shows historical information
of the independence of Bangladesh.

Apart from these, we have chosen 9 popular local apps.
Notepad, SMS scheduler, Bangla Dictionary are utility apps
directed towards everyday usage of the users. 360 degree is
a simple yet interesting game due to its brightly coloured
graphics and challenges. Audacity is a marketing app, directed
towards entrepreneurs and business owners. Chorki displays
live news updates from major local newspapers and online
news portals. FlexiPlan app is designed to help users of
specific telephone operator to plan their internet, talktime and
SMS usage. The app Harriken is for helping its user to discover
local restaurants and providing information and reviews about
them. HiFi Public is a free application that will update the
user on the latest in local and international technology news,
gadget reviews, start-ups, software and hardware.

A. Test Result

We have tested the selected apps with three different tools
and gathered report on those. After analyzing those reports,
we have tabulated the vulnerabilities for each apps. Table II,
III, IV show the combined test outcomes.

According to the result of our tests in table II and III, all the
chosen apps were found to have one or more vulnerabilities.
From table II, Exploring Bangladesh and Virtual Radio top
the list of risk with 6 vulnerabilities each. Baishakh Cam,
Child Vaccine, Shadhinata26 and Rickshaw Race also tested
positive to 5 vulnerabilities. On the other hand, BDJobs, Bank
Info and Art Cinema Club Centers app were vulnerable to
only one issue each. If we organize this data according to the
vulnerabilities, it is observed that Webview vulnerability is
the most common one prevalent over 13 applications, namely
Learn Html, Bangla Alphabet, Virtual Radio, Baishakh Cam,
Child Vaccine, Edutube, Falgun App, Find Your Friend A
Valentine, Money Calculator, Shadhinota26, Rickshaw Race
Dhaka, EatlStore and Exploring Bangladesh. Other dominant
vulnerabilities are Database Vulnerabilities and Storage access
vulnerabilities, found in 11 and 12 apps respectively.

From table III, we see these apps have lower rate of vulner-
abilities than those of table II. Hifi-Public, Chorki, Audacity,
Harriken and 360 degree each show 3 vulnerabilities. The
other apps in this list show one or two vulnerabilities. Just
like table II, we see that Webview vulnerability is a leading
problem, while being closely followed by storage access
vulnerability.

To strengthen our argument, we have randomly selected a
few of the most popular apps on Google Playstore, namely
Gmail,Cam Scanner, Youtube, NeoReader, Clean Master and
Sound Cloud. After running tests on these apps with our
test tools, Gmail,Youtube and NeoReader showed none of the
vulnerabilities discussed in our paper. Of the other three apps,

TABLE II
SELECTED APPS AND TEST OUTCOME (EATL)

App Name Combined Test Outcome

Bikalpa Pusti Database Vulnerability,
Vulnerability in Debug mode

Learn Html
Vulnerability in Storage Access,
Webview vulnerability,
Advertisement Vulnerability

Bangla Alphabet
Storage Accessing,
Webview vulnerability,
Vulnerability in Debug mode

Art Cinema Club Centers Database Vulnerability
Bank Info Database Vulnerability

Personal Budget Vulnerability in Debug mode
Database Vulnerability

Find For Me Database Vulnerability,
Advertisement Vulnerability

Bdjobs Database Vulnerability

Virtual Radio

Vulnerability in Storage Access,
Database Vulnerability,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent,
Vulnerability in Api Call

Baishakh Cam

Vulnerability in Storage Access,
Database Vulnerability,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent

Child Vaccine

Vulnerability in Storage Access,
Database Vulnerability,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent

Edutube
Vulnerability in Storage Access,
Webview vulnerability,
Vulnerability in Api Call

Falgun app

Vulnerability in Storage Access,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent

Find Your Friend
A Valentine

Vulnerability in Storage Access,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent

Money Calculator
Vulnerability in Storage Access,
Webview vulnerability,
Advertisement Vulnerability

Shadhinota26

Vulnerability in Storage Access,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent,
Vulnerability in Api Call

Rickshaw Race
Dhaka

Vulnerability in Storage Access,
Database Vulnerability,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent

EatlStore

Vulnerability in Storage Access,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent

Exploring
Bangladesh

Vulnerability in Storage Access,
Database Vulnerability,
Webview vulnerability,
Advertisement Vulnerability,
Vulnerability in Intent,
Vulnerability in Api Call

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SELECTED APPS AND TEST OUTCOME (AUDACITY)

App Name Combined Test Outcome

360 degree
Vulnerability in Storage Access,
Webview vulnerability,
Vulnerability in Intent

Audacity
Vulnerability in Storage Access,
Webview vulnerability,
Vulnerability in Intent

Chorki
Vulnerability in Storage Access,
Webview vulnerability,
Vulnerability in Intent

Bangla Dictionary Vulnerability in Storage Access,
Webview vulnerability

Flexiplan Webview vulnerability

Harriken
Vulnerability in Storage Access,
Webview vulnerability,
Vulnerability in Intent

Hifi Public
Vulnerability in Storage Access,
Webview vulnerability,
Vulnerability in Intent

Notepad Vulnerability in Storage Access,
Webview vulnerability

SMS Scheduler Vulnerability in Storage Access,
Webview vulnerability

TABLE IV
SELECTED APPS FROM GOOGLE PLAYSTORE AND TEST OUTCOME

App Name Combined Test Outcome
Gmail No vulnerability
Cam Scanner Database Vulnerability
Youtube No vulnerability
NeoReader No vulnerability

Clean Master Vulnerability in Intent,
Database Vulnerability

Sound Cloud
Vulnerability in Intent,
Database Vulnerability,
Vulnerability in Debug Mode

all of them showed Database vulnerability. Clean Master and
Sound Cloud showed vulnerability of Intents. The detailed
analysis is given in Table IV of our paper.

To have a quick overview of the occurrence ratio of the
vulnerabilities, we have created a pie-chart in 3. From the
Fig. 3 we can observe that Webview Vulnerability, Storage
Access Vulnerability, Advertisement Vulnerability, Database
Vulnerability are common in those apps. Among them the
rate of Webview Vulnerability is very high. After analyzing
the data we can observe that around 68.4% of the apps
have Webview vulnerability which is very harmful to the app
users. And the least vulnerability that is found in the apps is
debug mode vulnerability. Its occurrence rate is around 15.8%.
Surprisingly SMS and phone call vulnerability are not found
in the selected apps. Vulnerability in api call is also very low.
Its occurrence rate is 21%.

B. Countermeasure

Vulnerabilities need to be prevented as it is a great hindrance
to the app security. It can be ensured by developing apps with
an extra care. Webview should be used more securely. It be-
comes less secure when viewing third-party apps in Webview.
When ”setAllowFileAccess” attribute of a Webview is set to

Fig. 3. Occurrence of Vulnerabilities in Selected Apps

true, attackers get the chance of accessing local storage by
injecting malicious script in it. By setting setJavaScriptEnabled
attribute to false, each context needs to be escaped properly
by using an XSS filter component.

All the important files, database backup files, user authenti-
cation information need to store in internal storage rather than
to external storage. One can view the data that is stored in the
external storage without even getting inside the app.

Android debug mode needs to be turned off when releasing
the app to the store. If it remains turned on then attacker may
get the chance to communicate with app through adb and
view the log file. To prevent database information leak one
way is to use SQL Cipher [45]. Malicious advertisement can
cause a user to leak his information to the hacker. If a system
can be implemented that an app need to go through several
vulnerabilities testing process before publishing an app in the
store then a big number of vulnerabilities can be prevented.

VI. CONCLUSION

From the day when the Android was introduced, researchers
have been searching for loopholes in its inherent security
mechanism and they have also proposed security solution to
augment the security mechanism of Android apps. However,
in several cases, the vulnerabilities arise due to the lack of
awareness of the developers, rather than the system flaws. In
this paper, we have discussed the causes and effects of existing
vulnerabilities and the tools that detect those vulnerabilities.
We tested some apps from a local app store and some popular
local apps from Google Play Store with three different tools
that are available in the Internet. The report that we have
obtained from the test are presented in a tabulated form.
From the test result, we can observe that the rate of Webview
vulnerability is alarmingly high. Around 13 out of the 19 apps
have this vulnerability. Advertisement and Storage accessing
vulnerability are also very common in these days apps. It
is found in 12 apps out of the 19 apps. Hence necessary
countermeasures need to be taken in no time. We have also
discussed some countermeasures wherever possible, to defend

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

against the mentioned vulnerabilities. In this age when most
of the private and sensitive data are stored digitally and are
targets of cyber-criminals, it is imperative to ensure app and
data safety to the full extent.

REFERENCES

[1] Number of smartphone users worldwide from 2014 to
2019. Available at http://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/.

[2] Number of available applications in the Google
Play Store from December 2009 to February 2016.
Available at http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.

[3] 23 Disturbing Statistics about Mobile Security. Available at http:
//blogs.air-watch.com/2015/10/23-disturbing-statistics-mobile-security/
#.V69ArxIprvs.

[4] Malicious Android apps slip into Google Play, top third party
charts. Available at http://www.theregister.co.uk/2016/05/17/viking
horde android app malware/.

[5] Victor Chebyshev and Roman Unuchek. Mobile malware evolution:
2013. Kaspersky Lab ZAOs SecureList, 24, 2014.

[6] Zhejun Fang, Qixu Liu, Yuqing Zhang, Kai Wang, and Zhiqiang Wang.
Ivdroid: static detection for input validation vulnerability in android
inter-component communication. In Information Security Practice and
Experience, pages 378–392. Springer, 2015.

[7] K Jamsheed and K Praveen. A low overhead prevention of android
webview abuse attacks. In International Symposium on Security in
Computing and Communication, pages 530–537. Springer, 2015.

[8] DONG Guowei, WANG Meilin, SHAO Shuai, and ZHU Longhua.
Android application security vulnerability analysis framework based
on feature matching. Journal of Tsinghua University (Science and
Technology), 65(5):461–467, 2016.

[9] Da-Woon Leem, Hyun-Ju Jung, Moon-Sung Hwang, Jung-Ah Shim, and
Hyun-Jung Kwon. A single-process design for developing automation
tools for inspecting the vulnerabilities of android applications. 2015.

[10] Application Security Vulnerability: Code Flaws, Insecure Code Under-
standing Application Vulnerabilities. Available at http://www.veracode.
com/security/application-vulnerability.

[11] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick McDaniel. Iccta: Detecting inter-component privacy
leaks in android apps. In Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pages 280–291. IEEE
Press, 2015.

[12] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. ACM SIGPLAN Notices,
49(6):259–269, 2014.

[13] Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. Automat-
ically exploiting potential component leaks in android applications. In
2014 IEEE 13th International Conference on Trust, Security and Privacy
in Computing and Communications, pages 388–397. IEEE, 2014.

[14] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and
Gautam Nagesh Peri. Code injection attacks on html5-based mobile
apps: Characterization, detection and mitigation. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 66–77. ACM, 2014.

[15] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and
Konrad Rieck. Drebin: Effective and explainable detection of android
malware in your pocket. In NDSS, 2014.

[16] Patrick Mutchler, Adam Doupé, John Mitchell, Chris Kruegel, and
Giovanni Vigna. A large-scale study of mobile web app security. In
Proceedings of the Mobile Security Technologies Workshop (MoST),
2015.

[17] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing android sources and sinks. In
NDSS, 2014.

[18] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael
Weiss. andromaly: a behavioral malware detection framework for
android devices. Journal of Intelligent Information Systems, 38(1):161–
190, 2012.

[19] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor,
Manoj Singh Gaur, Mauro Conti, and Muttukrishnan Rajarajan. Android
security: a survey of issues, malware penetration, and defenses. IEEE
Communications Surveys & Tutorials, 17(2):998–1022, 2015.

[20] Timothy Vidas, Daniel Votipka, and Nicolas Christin. All your droid
are belong to us: A survey of current android attacks. In WOOT, pages
81–90, 2011.

[21] Hongliang Liang, Dongyang Wu, Jiuyun Xu, and Hengtai Ma. Survey
on privacy protection of android devices. In Cyber Security and Cloud
Computing (CSCloud), 2015 IEEE 2nd International Conference on,
pages 241–246. IEEE, 2015.

[22] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex:
statically vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM conference on Computer and commu-
nications security, pages 229–240. ACM, 2012.

[23] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and
X Sean Wang. Appintent: Analyzing sensitive data transmission in
android for privacy leakage detection. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages
1043–1054. ACM, 2013.

[24] Bradley Schmerl, Jeffrey Gennari, Javier Cámara, and David Garlan.
Raindroid–a system for run-time mitigation of android intent vulnera-
bilities. 2016.

[25] Shweta Bhandari, Rishabh Gupta, Vijay Laxmi, Manoj Singh Gaur,
Akka Zemmari, and Maxim Anikeev. Draco: Droid analyst combo
an android malware analysis framework. In Proceedings of the 8th
International Conference on Security of Information and Networks,
pages 283–289. ACM, 2015.

[26] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-
sec: Deep learning in android malware detection. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 371–372. ACM,
2014.

[27] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron
Visaggio. Detecting android malware using sequences of system calls. In
Proceedings of the 3rd International Workshop on Software Development
Lifecycle for Mobile, pages 13–20. ACM, 2015.

[28] Shina Sheen and Anitha Ramalingam. Malware detection in android
files based on multiple levels of learning and diverse data sources.
In Proceedings of the Third International Symposium on Women in
Computing and Informatics, pages 553–559. ACM, 2015.

[29] Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein,
Yves Le Traon, et al. Large-scale machine learning-based malware
detection: confronting the 10-fold cross validation scheme with reality.
In Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy, pages 163–166. ACM, 2014.

[30] Hao Zhang, Danfeng Daphne Yao, and Naren Ramakrishnan. Detection
of stealthy malware activities with traffic causality and scalable trig-
gering relation discovery. In Proceedings of the 9th ACM symposium
on Information, computer and communications security, pages 39–50.
ACM, 2014.

[31] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck.
Structural detection of android malware using embedded call graphs.
In Proceedings of the 2013 ACM workshop on Artificial intelligence
and security, pages 45–54. ACM, 2013.

[32] AB Bhavani. Cross-site scripting attacks on android webview. arXiv
preprint arXiv:1304.7451, 2013.

[33] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin.
Attacks on webview in the android system. In Proceedings of the
27th Annual Computer Security Applications Conference, pages 343–
352. ACM, 2011.

[34] Android WebView vulnerability allows hacker to install
malicious apps. Available at http://thehackernews.com/2013/09/
android-webview-vulnerability-allows.html.

[35] Google puts 60 percent of Android users at risk with WebView security
changes. Available at http://www.v3.co.uk/v3-uk/news/2389839/
google-puts-60-percent-of-android-users-at-risk-with-webview-security-changes.

[36] Android Hacking & Security - Part 8: Insecure Local
Storage. Available at http://resources.infosecinstitute.com/
android-hacking-security-part-10-insecure-local-storage/.

[37] Android Hacking and Security, Part 3: Exploiting Broadcast
Receivers. Available at http://resources.infosecinstitute.com/
android-hacking-security-part-3-exploiting-broadcast-receivers/.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

[38] Most Android devices running outdated versions. Avail-
able at http://www.computerweekly.com/news/4500271242/
Most-Android-devices-running-outdated-versions.

[39] Bradley Reaves, Logan Blue, Dave Tian, Patrick Traynor, and Kevin RB
Butler. Detecting sms spam in the age of legitimate bulk messaging.
In Proceedings of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, pages 165–170. ACM, 2016.

[40] Yu-Cheng Lin. AndroBugs Framework. Available at https://www.github.
com/AndroBugs/AndroBugs Framework,version1.0.0.

[41] SandDroid Testing Tool. Available at http://sanddroid.xjtu.edu.cn/.
[42] Android Open Source Project. Available at https://source.android.com/.
[43] Qark Testing Tool. Available at https://github.com/linkedin/qark.
[44] Social Network Site. Available at https://www.linkedin.com/.
[45] Rachmawan Ardiansa. Developing secure android application with

encrypted database file using sqlcipher. PhD thesis, UTeM, 2014.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:16:20 UTC from IEEE Xplore. Restrictions apply.

