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Smart speakers, which wait for voice commands and complete tasks for users, are becoming part of common households.
While voice commands came with basic functionalities in the earlier days, as the market grew, various commands with
critical functionalities were developed; e.g., access banking services, send money, open front door. Such voice commands can
cause serious consequences once smart speakers are attacked. Recent research shows that smart speakers are vulnerable to
malicious voice commands sent from other speakers (e.g., TV, baby monitor, radio) in the same area. In this work, we propose
the Speaker-Sonar, a sonar-based liveness detection system for smart speakers. Our approach aims to protect the smart
speakers from remote attackers that leverage network-connected speakers to send malicious commands. The key idea of
our approach is to make sure that the voice command is indeed coming from the user. For this purpose, the Speaker-Sonar
emits an inaudible sound and tracks the user’s direction to compare it with the direction of the received voice command.
The Speaker-Sonar does not require additional action from the user and works through an automatic consistency check.
We built the Speaker-Sonar on a raspberry pi 3b, a circular microphone array, and a commodity speaker by imitating the
Amazon Echo. Our evaluation shows that the Speaker-Sonar can reject remote voice attacks with an average accuracy of
95.5% in 2 meters, which significantly raises the bar for remote attackers. To the best of our knowledge, our defense is able to
defend against known remote voice attack techniques.
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1 INTRODUCTION

Smart speakers, also known as intelligent voice assistants such as Amazon Echo and Google Home, are becoming
popular; as of May 2018, 54.4 million people in the U.S own a smart speaker [20]. Furthermore, the number of
skill (i.e., voice apps) counts in Amazon Alexa surpassed 30,000 in the U.S. [3]. Such devices wait for a user voice
command and are triggered by particular keywords, such as “Alexa" and “Hey, Google", and follow the voice
command received to perform various activities which include critical services. For example, the smart speakers
can help users to transfer money (e.g., Paypal), shop online, access banking services, place phone calls, schedule
appointments, check emails, control cars (e.g., learn location, unlock, start engine), and even control smart home
devices (e.g., open front door, change security setting of home from away mode to stay mode which disables
motion-sensors). Recent articles report that other critical commands are on the way: e.g., Amazon is considering
to use Alexa to start a person-to-person payments feature [8]; Amazon pay is going to be available for donations,
restaurants and event ticketing [7]. Smart speakers, the interface of such critical voice commands, should be well
protected as the consequences can be serious once they are attacked.
Emerging Threats to Smart Speakers. Since the smart speakers are continuously listening and are waiting for
voice commands, they can be attacked by malicious voice commands sent from nearby network-connected devices:
e.g., audio from television advertisements triggered Amazon Echo to place orders for dollhouse [5], Google
Home to describe Whopper burger [11]. In addition, network-connected devices with speakers are emerging
and becoming more common in the customer’s homes: e.g., smart TV, baby monitor, security camera. Indeed, it
has been reported that such devices are vulnerable to attacks and can be hacked: for example, security-critical
weaknesses have been found in Smart TV [12], Belkin NetCam [14], baby monitors [19]. Moreover, according to
a recent report from Consumer Reports, millions of smart TVs are found to be vulnerable and can be controlled
by hackers exploiting easy-to-find security flaws [12]. Once such network-connected devices are hacked, smart
speakers become exposed to attacks. Such observations show that a threat against smart speakers becomes
increasingly realistic.
In the meantime, recent research demonstrates that smart speakers are vulnerable to various types of voice

command attacks which use different techniques: The replay attack [62, 63] and voice synthesizing attack [31, 65]
can send malicious voice command that mimics users voice whereas the dolphin attack [70] and inaudible voice
commands (long-range version of dolphin attack) [52] are more stealthy, producing commands inaudible to
human.
Despite the success of smart speakers and the dramatic growth of its voice app store (e.g., Alexa skills store),

little has been done to protect them. Considering the number of smart speaker users and the type of voice apps
they offer, once the smart speakers are attacked, the consequences could be serious: e.g., cause financial loss by
transferring money to a malicious party, threatening the safety of the users by controlling smart home devices.
Moreover, the popularity of network-connected devices which are shown to be often vulnerable [12, 14, 19]
and the research on attacks targeting smart speakers warns that protection of such smart speakers is necessary.
So far, several defenses have been proposed: e.g., smart speakers have an option to set a pin code. However,
this has only been used for purchase. Also, prior work [59] proposes multiple defense options: audio/visual
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feedback on reception of a command; audio captcha to verify whether the command is coming from a human, etc.
EchoSafe [22] suggests a machine learning based defense mechanism that needs to be retrained every time the
environment changes. However, these defenses all have limitations: they either add a burden to the users (intrusive
in terms of user experience) or need long training time. Before we design our own defense, to understand how
users’ interact with smart speakers, we conduct an online survey (see Section 3). From the survey, we understand
how users use smart speakers and also learn their expectations on the potential defenses for smart speakers.
Speaker-Sonar. In this paper, we propose Speaker-Sonar, a new real-time, non-intrusive, liveness detection
system for smart speakers. The Speaker-Sonar particularly focuses on defending against remote attackers which
can exploit vulnerable network-connected speakers and send malicious voice commands. We carefully designed
the Speaker-Sonar to meet the following goals: 1) provide non-intrusive user experience, 2) conduct real-time
defense which does not require additional training time, 3) use hardware similar to the current smart home
devices.

The key idea of our approach is to make sure the voice command is indeed coming from the user. In other words,
we check both the direction of the voice command and the user, and then verify whether they are consistent. For
this purpose, we transmit an inaudible ultrasonic sound through a smart speaker and track the user’s direction by
detecting her movement using doppler shift and compare it with the direction of a voice command received. Our
defense provides non-intrusive user experience, since it works automatically by checking the directions of the
user and the voice command without requiring additional user interventions. Furthermore, Speaker-Sonarworks
in real-time and does not need to be trained even when the environment is changing. Moreover, our approach
can be generalized to other smart speakers as the Speaker-Sonar does not require any special equipment for
transmitting and receiving signals (e.g., RF, microwave, Wifi). Actually, our system is simply built based on a
raspberry pi 3b, a circular microphone array, and a normal speaker for playing music, which realistically imitates
a common smart speaker.
However, building such a defense mechanism on these mediocre hardware pieces not designed for such a

purpose is by no means trivial. More specifically, the small size of the microphone array, which is similar to
popular smart speakers is small; the close distance between each microphone makes calculating an accurate
distance through triangulation infeasible. Second, the speaker we use is not made for transmitting ultrasonic
sound; the transmission signal has to be carefully designed to be inaudible in a higher volume. Third, smart
speakers are often placed in an indoor environment, and such a reverberant environment (e.g., walls, furniture)
makes movement detection hard. Fourth, detecting slow human activities with a continuous-wave radar is
challenging; missing slow movements will lead to failure in the consistency check.

We address these challenges by leveraging a series of techniques: instead of using location, we use the accurate
direction and the energy of the movement. We design our ownwide-band signal which is inaudible and suitable for
reverberant indoor environments; accordingly, for localization, we use the SRP-PHAT-HSDA, which is lightweight
and accurate. To detect slow movements, we combine appropriate windowing, spectral subtracting with noise
bin removal techniques to enhance the frequency spectrum for better localization results.

In the following, we elaborate on howwe defend against remote attacks using the Speaker-Sonar. As discussed,
the key idea behind our approach is to do a consistency check on the direction of the user and the voice command.
Consider that the attacker has a hacked speaker under control. In the absence of Speaker-Sonar, the attacker
only needs to send out a malicious voice command through the hacked speaker to attack the smart speaker.
However, in the presence of the Speaker-Sonar, which does a consistency check, an attack no longer works
without the following information: 1) where the hacked speaker is, 2) where the smart speaker is, and 3) where
the user is in real-time. However, the attacker usually does not know any of such information. In such a case, the
attack becomes very opportunistic.
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As shown in Section 5, Speaker-Sonar is not only non-intrusive, but also is effective. Furthermore, we show
that by design the Speaker-Sonar, based on consistency check, raises the bar higher for remote attacks and can
defeat them.
Contributions. The contributions of the paper are outlined as follows:
• We present Speaker-Sonar, a sonar-based defense system which introduces a simple but effective consistency
check; our system provides non-intrusive user experience, makes the remote attack very opportunistic, and does
not require any prior training. Also, the Speaker-Sonar is effective, capable of rejecting remote voice attacks
with an average accuracy of 95.5% in 2 meters radius. Furthermore, our system, based on consistency check, is
able to effectively defend against all known attack techniques for creating malicious voice commands in a remote
attack, to the best of our knowledge.
• We build a sonar-based radar with mediocre devices. While techniques used in such radar systems are mature,
building such radar systems with devices not made for such a purpose is challenging. Throughout the paper, we
described our innovations that address the challenges: e.g., designing transmit signal, windowing, doppler-spectrum
enhancement techniques, departure detection, etc.
• We provide new understanding by conducting an online survey and show how users interact with smart
speakers and what they may expect for potential defenses. Specifically, our online survey shows that more than
80% of users of both the Amazon Echo (84.5%) and Google Home (83.1%) do not feel uncomfortable coming closer
(2 meters) to the smart speakers to get protected while giving critical commands.

2 BACKGROUND

In this section, we discuss the techniques and concepts that are required to understand our defense mechanism,
in order to focus on the actual details that are specific to the Speaker-Sonar in Section 4. We also provide the
signal processing prerequisite (e.g., FFT, time-domain, frequency-domain) in the Appendix for people who are
not familiar with this area.
Sonar. Sonar is a technique that uses sound propagation to detect objects [37]. Sonar includes two types of
technologies: passive sonar, which locates target through listening for the sound from a target, and active sonar,
which emits sound pulses and listens for echoes [42]. In our research, we make use of both techniques; active
sonar is utilized for detecting movement of users by emitting ultrasonic sound with a speaker and receiving the
reflected sound with a microphone array (i.e., matrix voice) whereas the passive sonar, similar to human ears, is
used for localizing voice commands with SSL (sound source localization) techniques. We operate both active sonar
and passive sonar concurrently on a raspberry pi 3b; this is possible as the human voice and ultrasonic sound are
in different frequency ranges. We use the ultrasonic sound in the 18–20 kHz range, which is commonly used in
previous research [36, 47, 48]; such sound is often used as it is inaudible to most adults and can be produced and
recorded by common speakers and microphones.
Moving Target Detection. There are various approaches for detecting moving objects: e.g., motion detector
radar, ultra-wideband radar, SAR, etc [46] [34] [68]. Among them, the doppler radar transmits a microwave signal
towards the target and analyzes how the target’s motion has affected the frequency of the returned (or reflected)
signal; the frequency change of the signal caused by a moving sender or receiver is a well-known phenomenon
called the doppler shift. However, such radars cannot directly analyze doppler shift from the received frequency
spectrum as the doppler shifts are always submerged by background noise and stationary noise; the reflection
of the transmitted signal comes from both the moving targets and stationary objects. Therefore, an important
step for radars is removing or suppressing such stationary noise from the received frequency spectrum which
contains doppler shift. A common approach is the moving target indication (MTI) filter; the idea of the approach
is to subtract the frequency spectrum with mainly noise from the frequency spectrum with both the doppler shift
and the noise. Such a subtraction technique, which suppresses the stationary noise and leaves the doppler shift, is
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called spectral subtraction. As microwave does, the sound wave also is reflected by a human; thus, it is possible to
build a movement detection radar based on doppler shift with a speaker and microphone as did in our research.
Time Difference of Arrival (TDOA). Sound localization, in general, includes the direction of arrival and TDOA.
In far-field cases, DOA-based beamforming methods need a large number of microphones for highly accurate
narrow-band sound source localization. TDOA-based methods with high sampling rates are commonly used
methods for highly accurate wide-band sound source localization both in near-field and far-field cases [50].
Therefore, TDOA is applicable in our case considering the following aspects: 1) the microphone array (matrix-
voice), which has eight microphones, is small, and the distance between the microphone pairs are close; the closer
distance between microphones, the nearer a far-field begins. 2) wide-band signals are more suitable for reverberant
indoor environments. The TDOA method consists of two separate steps: estimation of time-delay and location
calculation. A common method of estimation of time delay is to use correlation methods, and among them, the
generalized cross-correlation with Phase Transform (GCC-PHAT) is the most popular algorithm [28]. While
GCC-PHAT more popular, SRP-PHAT (usually computed using GCC-PHAT with each pair of microphones [35])
and the MUSIC-based approaches (SEVD-MUSIC) are well-known for their robust performance in adverse acoustic
environments. However, both approaches require a lot of computation. Recently, [35] proposed an SRP-PHAT
method referred to as SRP-PHAT-HSDA for Hierarchical Search with directivity model and automatic calibration.
SRP-PHAT-HSDA scans the 3D space over a coarse resolution grid and then refines search over a specific area,
which makes the method convenient for low-cost embedded hardware. Therefore, in our work, we use the
SRP-PHAT-HSDA as it is relatively lightweight but still robust in performance.

Table 1. Terminologies in this Paper

Term Meaning

noise-spectrum A frequency spectrum which includes stationary noise and background noise; later used for spectral
subtraction when enhancing the doppler-spectrum; typically recorded when there is no movement.

doppler-spectrum A frequency spectrum which includes doppler shift and noise-spectrum; typically recorded when there is
movement.

enhanced doppler-spectrum A frequency spectrum acquired by enhancing the doppler-spectrum using series of techniques.
defense radius The maximum radius of where our defense works.

3 SURVEY

To build a usable protection for smart speakers, we launch online surveys to understand how users interact with
the smart speakers. In particular, we design two surveys which target the users of major smart speakers (Amazon
Alexa and Google Home). Note that the online survey is approved by IRB.

3.1 Survey Design

From the survey questions, we collect three categories of information: users’ daily interactions with smart
speakers, users’ expectations for the defense on the smart speakers, and users’ demographic information.
First, to understand users’ interactions with the smart speakers, we begin with simple questions; e.g., what

smart speaker they are using and how long they have been using it. We also ask the participants about their
daily usage habits; e.g., the distance from the speaker when they talk to the speakers. Second, to know the users’
expectations for the potential defense solutions on the smart speakers, we design questions that ask if users use
sensitive voice commands and whether they are willing to make certain trade-offs for better protection. Finally,
we collect users’ demographic information, such as age, gender, occupation, and income.

After we design the survey questions, we run through a pilot study to improve the survey questions. Then
we launch the survey on Mturk with the finalized questions. In the recruitment message, we write that we are
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looking for Alexa/Google Home users to study their experiences with these smart speakers. We also state that we
are looking for participants that meet the following requirements: (1) 18 or above; (2) speak English fluently; (3)
live in the US.

3.2 Survey Results and Analysis

From the survey, we collected a total of 411 valid responses (199 for Alexa and 212 for Google Home). In the
following, we focus on understanding the users’ responses while additional information (e.g., demographic,
limitation, sample questions) related to the survey can be found in the Appendix.
In our survey, the participants report that they use the smart speakers from 0–20m distance; we consider

10–20m as outliers; also, for users’ who report a range, we distribute it to the corresponding distance. From the
result, we found that many users give commands in a close distance; 85.04% of Alexa users and 77.7% of Google
Home users report that they give commands from 0–3m while 64.01% of Alexa users and 61.3% of Google Home
users report that they talk to the device from 0–2m. The complete result can be found in Table 7 of the Appendix.
Finally, 3 Alexa users and 18 Google users report using the device at a distance of 10–20m and we count them
as outliers. Note that some users’ range might distribute into different sub-ranges as we just reported. We also
analyze more self-reported usage data from the survey. We find that users have an average of 1.54 devices at
home (range from 1 to 4). Google Home users make an average of 5.98 voice commands daily, whereas Alexa
users make an average of 7.28 voice commands.

We also analyzed users’ expectations for the security of the smart speakers, and find that users are okay with
tradeoffs such as location recording on a device for better security. According to our survey results, we find
that 13.7% of Google survey participants and 10.6% of Alexa survey participants use sensitive voice commands
daily. In particular, we find that most participants are okay with the tradeoffs for protecting themselves. Also, the
participants are more willing to cope with the tradeoffs when they use sensitive voice commands. In general,
75.0% of the Google Survey participants (159 out of 212) and 74.9% of the Alexa survey participants are willing to
come to 2m for giving commands, while 83.1% of the Google survey participants (176 out of 212) and 84.5% of the
Alexa survey participants (168 out of 199) are okay with the 2m limitation when they give sensitive commands.
64.1% of the Google survey participants (136 out of 212) and 62.3% of the Alexa survey participants (124 out of
199) are okay with the device tracking their location for general commands. In comparison, for giving sensitive
commands, 58.5% of the Google survey participants (124 out of 212) and 53.7% of the Alexa survey participants
(107 out of 199) are okay with the device tracking their location.

4 SYSTEM DESIGN

The Speaker-Sonar checks whether the direction of the user and the voice command is consistent by emitting an
inaudible ultrasonic sound and analyzing the reflected signal. In this section, we elaborate on how the Speaker-
Sonar is designed and implemented. The last part of the section describes how we can use the Speaker-Sonar
to tackle remote attacks in detail. In Table 1, we summarize the terminologies used throughout the section.

4.1 Approach Overview

Threat Model and Goal. We focus on tackling remote attacks that target smart speakers in the absence of
a user by sending commands through compromised network-connected devices such as television, speakers,
surveillance cameras, or baby monitors. While there can be multiple hacked speakers, we only use a single smart
speaker to defend against the remote attacks; building a defense with more than one smart speakers in a distance
make the problem much easier as we can localize the accurate location (not direction) of users and the voice
command. Considering such threats, our defense system built based on the following assumptions. First, we
assume that the smart speaker is at least 12 inches away from the walls (very reverberant) and are not near noisy
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Fig. 1. Left: Raspberry pi 3b with matrix-voice. Center: Omni-directional speaker. Right: System devices together.

appliances or obstructions; common smart speakers also do not work well in such conditions and such guidelines
to solve the problem can easily be found [1, 2, 6]. Second, we ask the user to remain in the same direction while
saying the command; while Amazon Echo does localize the user’s voice when triggered by the word Alexa (i.e.,
direction is indicated by the LED), it also does not perform active direction tracking of the user’s voice command
in real-time.
In this research, we aim to build a defense mechanism for smart speakers that verifies whether the direction

of the user and the command the smart speaker received is consistent; in other words, we check whether the
command received is indeed coming from the same direction of the user. Particularly, our mechanism focuses on
delivering a non-intrusive user experience with devices that are no better than commodity smart speakers such
as Amazon Echo or Google home. The prototype of our idea, Speaker-Sonar, is built using a raspberry pi 3b [18],
cheap omni-directional speaker ($45 from amazon) [15] and matrix-voice ($65) [21] as shown in Figure 1. To
detect and track users’ direction, Speaker-Sonar emits an inaudible ultrasonic sound and analyzes the reflected
signal. Building such a defense system with mediocre devices which are not built for such purpose is nontrivial.
Challenges. In the following, we list the challenges of building our approach.
• Challenges coming from the devices. First, the circular microphone array we are using is small (i.e., the distance
between each microphone is close and ranges from 3.3cm to 7.5cm). Such a small distance makes calculating the
accurate distance through triangulation infeasible as the far-field effect becomes too important; such limitation
comes from antenna theory. Intuitively, if the distance between microphones is small and the sound source is in
far-field, marginal errors in the direction of arrival (i.e., angle) may cause a substantial difference in distance.
Because of such limitation, instead of tracking the users’ location, we focus on accurately tracking the direction
and use it for consistency check. Second, we use a portable speaker made for playing music. As such speakers are
not made for emitting inaudible ultrasonic sound, they create sub-harmonic sounds in the audible frequency
range in high volume. To solve the problem, we design our own signal with the optimal number of frequency
components to make it not generate sub-harmonics at a higher volume; while planless reduction of the number
of frequency components lead to inferior localization performance, too many of them make the sound audible
even at a lower volume. Furthermore, to keep the defense radius at 2 meters while keeping the transmit sound
inaudible, we leverage denoising and energy-based filtering techniques.
• Challenges coming from detecting movement of users. First, human at home usually moves relatively slow (e.g.,
human walking speed is around 0.7m/s - 1m/s). Such slow movements are more difficult to detect and localize
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as the doppler shift made from human movement is small and overlaps with the transmit signal; the problem,
reflected signals from stationary and slow-moving objects being masked by the transmit signal, is a known
problem for continuous-wave radar and is challenging to solve as the limitation comes from how the approach
works. We combine a series of techniques (e.g., proper windowing, noise-bin removal, spectral subtraction) and
overcome such a problem. Second, while a voice command coming from the mouth can be localized to a certain
direction, getting an exact direction for a user’s movement is difficult; movements come from various parts of
the user’s body (e.g., two arms on each side of the body) which is in different direction from the microphone.
Especially when the user is close to the microphone, the angle can range up to 20 to 30 degrees. Thus, for human
movement, we derive a range of angles from the localized direction of the user’s movements.
• Challenges that come from the environment. First, smart speakers, which Speaker-Sonar aims to protect,
are often placed in an indoor environment. The reflected signals from stationary objects and walls in such a
reverberant indoor environment make detection of human movement much more difficult. Second, the energy of
the signal reflected from the human and the stationary object is very similar, as both of them are the reflection of
our transmit signal. To solve both challenges, as wide-band performs better than narrow-band in a reverberant
environment [54], we designed our own wide-band transmit signal, which is suitable for movement detection
and use a wide-band localization algorithm (i.e., SRP-PHAT-HSDA).

Fig. 2. Overview of Speaker-Sonar.

Design and Architecture. The design of Speaker-Sonar, illustrated in Figure 2, consists of 4 modules: Spectrum
Preparation, User Direction Analyzer, Command Direction Analyzer, and Direction Consistency Checker. Their
responsibilities are as follows: The Spectrum Preparationmodule prepares the frequency spectrum for the following
steps by transmitting an ultrasonic sound and performing STFT (Short Time Fourier Transform) and windowing
on the received signals. The User Direction Analyzer module gets the user’s direction and detects the user’s
departure using a series of techniques; e.g., doppler shift analysis, energy, spectral subtraction, and TDOA (time
difference of arrival) based localization algorithm. The Command Direction Analyzer module gets the direction of
the received voice command. Finally, the Consistency Checker module conducts a consistency check given the
direction of the user and command and the user departure status.
System Flow. Here we describe the workflow of Speaker-Sonar. The Spectrum Preparation module first
transmits a specially designed inaudible ultrasonic sound and performs STFT (Short Time Fourier Transform)
and windowing on the reflected signals received by the microphone array. The processed STFT results (i.e.,
frequency spectrum) are duplicated, and each of them is passed to the User Direction Analyzer and Command
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Direction Analyzer module. The User Direction Analyzer module applies a high-pass filter to focus on the high
frequencies (i.e., frequency range of the transmit signal) range and searches for doppler shifts to determine
whether movement exists. When no movements are detected, the User Direction Analyzer module updates the
noise spectrum with the input frequency spectrum. When there are movements, the input spectrum is further
processed to amplify doppler shift and minimize the noise utilizing the saved noise spectrum and a series of other
techniques. The User Direction Analyzer module then uses a TDoA based localization approach on the processed
spectrum to get potential directions of the detected movements. On the other hand, once a voice command is
detected, the Command Direction Analyzer module applies a low-pass filter to concentrate only on the human
voice and similarly uses the localization approach on the input spectrum to get the direction of the command.
Lastly, when both directions are obtained the Consistency Checker module compares the direction and decides
whether to pass or reject the received command.

4.2 Spectrum Preparation

As discussed, we detect whether the user is present in an indoor area by emitting an inaudible ultrasonic sound
and analyzing the reflected signal. In the following, we discuss how the transmit signal is designed and the
reflected signal is processed to a frequency spectrum once recorded. To precisely detect the user’s movement, the
signal we emit needs to be carefully designed and processed.
Design of Transmit Sound. Indoor environments are often reverberant and have many stationary objects that
reflect acoustic signals. As wide-band signals are known to work better in reverberant environments [54] we
designed our own wide-band signal considering the following three points: The signal should be suitable for
detecting normal indoor human activities (i.e., it needs to detect slow movements); the signal should be suitable
for wide-band TDoA (time difference of arrival) localization algorithms; the signal should be inaudible but still
provide enough detection range for defense. As shown in Figure 3, our transmit signal ranges from 18khz to
20.4khz and has seven peaks (i.e., frequency components) which are 400hz apart. We chose 18khz to 20.4khz
as such frequency range is inaudible for most humans as other previous work does [51, 52, 55]. The signals
are 400hz apart for two reasons: 1) Human walking speed approximately 1m/s [33]; for example, 1m/s speed
of movement with 19khz sound can cause doppler shift of 155.7hz assuming that the speed of sound is 343m/s
based on equation 4.2. Also, based on our experiment having more peaks make the sound more audible even at
less volume due to sub-harmonics, which leads to a smaller detection range.

∆f = for i − fdop =
2vob j

vsound −vob j
for i .

Frame Size and Windowing. Processing the recorded input signal is as much important as designing the
transmit signal. Speaker-Sonar uses 48khz sampling rate for input signals (i.e., recorded signals from the
microphone array) and use the frame size of 4096 and hop size of 2048. Based on our experiment, 4096 provided us
with enough frequency spectrum resolution for doppler shift analysis. To detect the slow movement of humans
(e.g., walking at home), we designed the transmitting with 7 peaks without any other frequency components. In
addition, for detecting slower movements, the type of window we use becomes important as the doppler shift can
be masked (or overlap) with the stationary noise (i.e., stationary noise mostly has frequency component of the
transmit signal); we cannot avoid overlap but can try to reduce the overlap as much as possible. Thus for slower
movements, using a window that minimizes the side lobe but keeps the main lobe width reasonable becomes
important. After testing various windows, we decided to use the blackman window over the hann window which
is used in various other works [30]. While hann window can be used for detecting relatively faster movements
(e.g., hand waving or repetitive motions), it turned out to be less suitable for detecting slower movements.
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Table 2. peak-bin and neighboring-bin of noise-spectrum

Bin 1 2 3 4 5 6 7 8 9 10 11
Magnitude 0.11 0.09 0.37 1.3 7.48 14.4 12.5 4.76 0.22 0.23 0.03

Table 3. peak-bin and neighboring-bin of doppler-spectrum

Bin 1 2 3 4 5 6 7 8 9 10 11
Magnitude 4.11 5.52 8.37 9.3 12.48 16.2 10.5 3.76 0.22 0.24 0.02

4.3 User Direction Analyzer

The key functionality of the User Direction Analyzer module is to get the direction of a user and further track
whether the user continues to reside within the defense radius (the radius Speaker-Sonar works) even when
there is no movement: As shown in Figure 2, to get the direction of a movement, given the frequency spectrum
from the previous module, it analyzes the doppler shifts (caused by the movement) and determines whether
there is a movement or not. If there is no movement, we save the frequency spectrum as noise spectrum since
the spectrum only contains background noise and stationary noise (i.e., reflected sound from stationary objects
which mainly consists of frequency components of the transmit signal). The noise spectrum is later used for
spectral subtraction to enhance the doppler shift. If a movement was detected, the User Direction Analyzer further
enhances the doppler shift within the frequency spectrum using series of techniques and then utilizes a TDoA
(time difference of arrival) based localization algorithm to get the direction of a user’s movement. To know the
presence of the user even when there is no movement, the User Direction Analyzer module records and keeps the
last direction of the user’s movement as long as the user is in the defense radius. Below we describe how each
step is done in detail.
Doppler Shift Analysis. Here we elaborate on the main functionalities of Doppler Shift Analysis in Figure 2:
movement detection and departure detection. To detect movements, we detect doppler shifts, a frequency change
caused by movements, by analyzing the magnitude (i.e., the absolute value of any bin). Before we get into more
details, we need to understand how the frequency spectrum with doppler shift and without it (i.e., no movement)
differs from each other. When there is no movement, the frequency spectrum includes background noise and
stationary noise; for short, we call such spectrum as noise-spectrum. When there is movement, the frequency
spectrum includes noise-spectrum and doppler shift; for short, we call such spectrum as doppler-spectrum. As
shown in Figure 6, the noise-spectrum is similar to our transmit signal Figure 3 and has no doppler shift whereas
the doppler-spectrum has both the frequency components of the transmit signal and the doppler shift. We call the
7 bins that has the largest magnitude as peak-bins.

In the following, we further describe the details of doppler shift analysis with the examples shown in Table 2
(noise-spectrum) and Table 3 (doppler-spectrum). We begin by discussing the details of the noise-spectrum. As
shown in Table 2, the blackman window effectively reduces the side-lobes confining the noise-bins (the bins
that mostly contains noise) to the two neighboring-bins (from bin 4 to 5 and bin 7 to 8) of the peak-bin (bin 6).
Similarly, the magnitude of the bins from 1 to 3 and 9 to 11 sharply drops to a negligible value (i.e., noise floor).
Such confinement of noise-bins and the minimal noise floor makes the doppler shift more obvious. Table 3 further
shows the details of doppler-spectrum. As shown, we can clearly see that the doppler shift towards the left of the
peak-bin. Based on such observation, we consider that there exists a movement whenever the magnitude of the
non-noise-bins (i.e., |peakBinIndex − tarдetBinIndex | ≥ 4) exceed 1; with such rule we are able to consistently
detect movements faster than 0.4m/s.

We elaborate on the departure detection in a separate paragraph after going through other parts as it requires
user direction and its energy information.
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Fig. 3. Frequency Spectrum of Transmit Signal Fig. 4. Frequency Spectrum of Received Signal

Fig. 5. Enhanced Doppler-Spectrum Fig. 6. Noise-Spectrum

Fig. 7. Noise-Spectrum vs Doppler-Spectrum Fig. 8. Noise-Spectrum vs Enhanced Doppler-Spectrum
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Doppler Enhancement. This step focuses on refining the frequency spectrum; awell-refined frequency spectrum
leads to better direction detection results in the localization step. Such process is important, as sound source
localization methods usually return noisy features that need to be filtered by tracking (e.g., particle filter, kalman
filter) the sound sources which is expensive in terms of computing resource. However, as we are dealing with
the reflected signal of our transmit signal, unlike speech which is directly received by the microphone from the
sound source (i.e., has stronger energy than noise), it is not possible to differentiate movement from noise using
energy. Furthermore, we avoid using such tracking algorithms as they require a lot of computation. Because of
such reasons, the Doppler Enhancement step, which refines the frequency spectrum is important. To enhance the
doppler-spectrum, we amplify the doppler shift and remove the noise using a series of techniques: magnitude
spectral subtraction, noise-bin removal, and doppler shift amplification.

We first perform a spectral subtraction by subtracting the magnitude of the noise spectrum (saved in Doppler
Shift Analysis step when there is no movement) from the doppler-spectrum. Then we add the phase of the
doppler-spectrum to the subtraction result. All negative values were set to the noise floor before adding the phase.
However, we found that such a classical but yet popular magnitude spectral subtraction approach does not work
well enough for slowly moving objects as it still leaves some residue of noise. Therefore, we decided to completely
remove the noise-bins which mainly contains the stationary noise (mostly comes from our transmit signal). Once
the two steps are finished, the doppler-spectrum will mostly contain just the doppler shift. To make doppler
shift stand out, we iterate the bins and amplify each bin with the energy of more than 0.1 Finally, the enhanced
doppler-spectrum will further be used by the following step to get the direction of the movements.
Direction of Arrival of Movement. Once the doppler-spectrum is enhanced, we get the direction of the
movement using SRP-PHAT-HSDA [35], an efficient state-of-art TDoA based localization algorithm. Given
the enhanced doppler-spectrum of all microphone pairs (as we have 8 microphones, there are 28 pairs) as an input,
we calculate the x, y, z coordinates (points to a direction in three-dimension) and the energy1 of the movement
utilizing SRP-PHAT-HSDA. As discussed, the potential direction of movements includes noise as completely
removing noise from the frequency spectrum is inconceivable. Therefore, we further filter out the potential
directions, which point to the noise utilizing the energy and their distance from other detected directions; for
each frame, the direction that has the maximum Once the filtering is finished, we finally acquire the direction
that corresponds to the user’s movement. However, any part of the human movement can cause doppler shift and
each movement would be pointed to its own direction. As a result, the detected direction of users movements can
be distributed to a range of direction (i.e., angle); e.g., consider an average man with a shoulder with of 46cm
approaching the smart speaker swinging his arms while walking. At the distance of 1 meter from the smart
speaker, the angle human movement covers can be as wide as 20 to even 30 degrees depending on how the human
is standing. To resolve this problem, we consider the movements of four frames, which covers approximately
340ms, and calculate the range of direction of the user. As we removed the potential directions which point to
noise, most of the distributed potential directions from four frames are clustered pointing to a direction where
the actual movements occurred. On top of the clustered potential directions, we consider the time-stamp of each
direction and give more weights to recent directions and calculate the minimum-angle and maximum-angle of
the movement. The minimum-angle and maximum-angle are adjusted by percentage for better performance; the
detection rate based on different percentage is evaluated in Section 5. Finally, we store the direction range (i.e.,
minimum-angle and maximum-angle) for consistency check.
Departure Status. What we did so far is to detect the direction of the user’s live movement in real-time. The
departure status step aims to determine whether the user is still in the defense radius when there is no movement
using two techniques: obvious departure detection and common behavior-based timeout. The former is for

1The sum of the filtered GCC-PHAT frames for all pairs of microphones provide the acoustic energy for each direction on the discrete
space [35].
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detecting a user promptly leaving an area, and the latter handles departure that was not detected by the former.
Leveraging the two techniques, as shown in Figure 2, we update the departure status which is later used by the
Direction Consistency Checker module with the last direction of the user for consistency check. For non-intrusive
user experience, such a process is necessary, as we do not want to ask the user to move (to let the system know
that the user is there) before saying a command. In the following, we describe the two techniques we use to
update departure status in detail.

We first elaborate on how we detect obvious user departure. The departure detection is built based on the two
observations: 1) when the user leaves the defense radius (area where the smart speaker is located), the direction
of the doppler shift in doppler-spectrum will let us know that the user is getting farther from the microphone
array (i.e., smart speaker); 2) the energy of the movement decreases (in the end it becomes very close to 0) as
the user moves away. Firstly, to detect the direction of the doppler shift from the doppler-spectrum, we simply
examine the neighboring-bins of the peak-bin. An increase in bandwidth on left-side of the peak-bin indicates
that the user is moving away whereas the increase on the right-side means that the user is moving towards
the smart speaker. Secondly, we use the energy variation of each direction as it reflects the distance from the
movement to the smart speaker. The basic idea is to analyze the energy of the directions saved from the previous
frames and check whether the energy decreases and reaches a marginal value over time. However, such trend
analysis is challenging because the energy of directions fluctuates over time (i.e., not a smooth curve). Therefore,
we use the Linear Least-Squares fitting algorithm to fit the energy data with a linear function. Then, using the
slope of the linear function, we check the trend of the energy and see if it is increasing or decreasing. To make
Speaker-Sonar efficient, we only run the departure detection whenever we detect a voice command while there
is no movement; this is possible as we save the frequency spectrum, the direction and energy of user’s direction
of the 4 previous frames of the last movement.

Secondly, to deal with user departure missed by the obvious user departure detection approach, we use common
behavior-based timeout; user departure are missed by the first technique when users leave the area slowly and
non-linearly (e.g., leaving in a circular path). As we can infer from the name of the approach, the common
behavior-based timeout is based on the small movements humans often make; e.g., nodding, turning the body
from one direction to another, walking slowly, waving hands, standing up. While small movements with slow
speed are difficult to localize (i.e., get direction), we are still able to detect the doppler shift such small movement
has caused. Every time we detect such a small movement, we reset the timeout. The default timeout value is set
to 5 minutes and can be adjusted based on the user’s activity pattern.

4.4 Direction of Arrival of Command

Getting the direction of the command is much more simple than movement. For detecting voice commands we
assume that the user says the command louder than existing background noise; such assumption is reasonable as
the existing smart speakers such as the Amazon Echo and Google Home has similar requirements [1, 2, 6]. To
get the Direction of Arrival of commands, we use a low-pass filter to focus on human voice and then use the
SRP-PHAT-HSDA [35]. The direction of the voice can easily be obtained by selecting the direction that has the
highest energy and density (i.e., many potential directions point to the same direction). Note that we keep the
command direction detection part simple as the main focus of our research is to accurately detect the direction of
movements and perform a consistency check utilizing a small microphone array and a commodity speaker.

4.5 Direction Consistency Checker

Once we have the direction range of the user’s movement and the direction of the command, the Direction
Consistency Checker finally decides whether to pass or reject the voice command received. If the user moved until
giving the command, we simply compare the user’s current direction range and the direction of the command.
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However, if we receive a voice command while there is no movement, we compare it with the last location of the
user’s movement as long as we did not detect user departure from the defense radius. If the departure status
indicates that the user is not in the defense radius, we simply reject all commands received.

4.6 Defending against Attacks

So far, we have discussed the details of how the Speaker-Sonar works. Here we discuss how we are able to
tackle remote attacks with our defense system.
How the Defense Works. Whenever the Direction Consistency Checker decides to reject the received command,
we alert the user that there was an attack attempt through an obvious feedback; when the user is not present
we send an email whereas when the user is present, we give an obvious audio/visual feedback and also send an
email. Moreover, the alert informs the user when and where (i.e., the direction) the malicious voice command
came from and what the command was; the direction is labeled as suspicious direction until the user takes further
action. With such information provided, the user would be able to determine whether the reported incident
was an attack. Once the incident is identified as an attack, we carefully think that the user would disable the
hacked device utilized by the attacker for sending malicious voice commands. In addition, we automatically block
repetitive (e.g., more than two times) attack attempts coming from a particular direction; the threshold can be
adjusted by the user. Thus, with the Speaker-Sonar in place, the attacker would have very few chances to attack
the smart speaker.
Understanding How Attacks are Taken Down. Once again, the key idea of our defense system is to make
sure that the voice command is coming from the user; in other words, with our protection in place, the attacker
needs to send the malicious voice command when the hacked speaker, the user, and the smart speaker are in a
straight line (i.e., same direction from the smart speaker). While the idea to do a consistency check is intuitive
and straightforward, it makes a huge difference from the attackers perspective.
Assume that the attacker already has a network-connected device with a speaker (hacked speaker for short)

under control. For a remote attacker to attack a smart speaker without Speaker-Sonar, the attacker can
successfully attack the smart speaker by just sending the command through the hacked speaker. However,
to attack a smart speaker with Speaker-Sonar, the attacker needs to know the following three information:
1) where the hacked speaker is, 2) where the smart speaker is, and 3) where the user is in real-time. However,
the attacker usually does not know any of such information. In such a case, the success of the attack becomes
very opportunistic and attacking such a system becomes virtually impossible as most likely the device would get
disabled by the user before succeeding.
The Effectiveness of the Defense. Here we discuss how effective our defense is by going through each scenario.
First, if the malicious command is sent in the absence of a user, most likely, all attack attempts would be detected
(i.e., rejection of voice command) and reported as no user movement is detected. Second, if the malicious command
is sent while the user is moving around, most likely, all attack attempts would be detected and reported; this
is because we require the user to stay in a certain direction while saying the command. Third, if the malicious
command is sent while the user is staying in a certain direction from the smart speaker, an attack would succeed
only if the command comes from the exact same direction from the user; as mentioned, the chance for the
attack to succeed is very low considering that the attacker is attacking blindly with very few chances before
getting blocked. Furthermore, if the attacker used the techniques of the dolphin attack [70], which delivers voice
commands through ultrasonic sound, to create a malicious voice command, the attack would have a higher
chance to be blocked (i.e. by the user’s body in between the hacked speaker and the smart speaker) even if it was
sent from the same direction of the user as ultrasonic sounds cannot penetrate or go around obstacles such as
human; sound that is similar to human voice have lower frequency and has a higher chance to go around (or
over) human. In reality, all three scenarios should happen together throughout the day.
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4.7 Limitation and Potential Threats

Limitation. The limitation of the consistency check is that it cannot defend against malicious voice commands
sent from a hacked speaker placed in the same direction of the user. However, such limitation can only be
exploited when the user is within 2 meter distance from the smart speaker. With this in mind, in the following,
we discuss the potential threats.
Potential Threats. There are two attack vectors in regards to potential threats: consistency check and the user
within 2 meters. We first discuss the small direction difference based voice command attack and then the voice
command crafting techniques utilized in previous work, which focus on evading the user.
• Small Direction Difference. Such type of threat can be handled as the Speaker-Sonar can distinguish small
angle differences, as shown in Section 5; the Speaker-Sonar can reject malicious commands with 90% accuracy
at 20◦ and 80% at 10◦ from 1m to 2m. Since detected attack attempts get reported to the user, the attacker needs
to succeed in his first try making sure that the hacked device is with the user (or very close).
• Audible voice command. The audible voice command, which includes attacks such as the replay attack [62, 63]
and voice synthesizing attack [31, 65] can be handled with our protection in place. As we require the user to be
within the 2 meter radius, the audible voice commands are likely to be heard and stopped by the user even if they
pass the consistency check; we consider the user as an additional layer of security.
• Inaudible voice command. Previous research [52, 70] demonstrates inaudible voice command attacks leveraging
the nonlinearity of microphones. However, both attacks require additional devices (ultrasonic transducer, amplifier,
battery pack) and cannot operate directly on normal smartphones or speakers; e.g., the attacker cannot remotely
hack the user’s device to send such inaudible voice commands. Even if the attacker comes on-site, the attacker
still needs to send the command when the user is with or near the additional device (built by the attacker) to
pass the consistency check. Although such attacks are out of the scope of our threat model (we consider remote
attacks), our protection raises the bar higher for even such sophisticated attacks.
• Commander song. The Commander song [69] is capable of hiding a malicious voice command in a song. Such
an attack can be a threat as the attacker may play the music while the user is near the smart speaker (e.g., while
using the device). However, such attacks can be mitigated using voice fingerprinting features that are embedded
in popular smart speakers (e.g., Amazon Echo, Google Home).

4.8 Discussion: Additional Design and Practical Issues

Here we discuss the practical issues of Speaker-Sonar and the additional design that alleviates the issues.
Additional Design. Popular smart speakers such as the Amazon Echo have circular LED lights that are used for
various functionalities; e.g., pointing the direction of the voice command it receives. Such LED lights can also be
used for pointing the direction of movements of users. When users become stationary, different LED colors can
be used to differentiate stationary users from actively moving users.
Practical Issues. In the following, we discuss the practical issues of the Speaker-Sonar.
• Stationary users. As our system relies on doppler effect, stationary users are handled by recording the last
direction of users’ movements (Section 4.3). The recorded last direction of the user can be indicated with the LED
light before timeout. Once timeout occurs, the LED light goes off and the users would know that the recorded
last direction is cleared. While sending a command, stationary users can check the LED light to see if the last
direction is still recorded. If the recorded direction is cleared, users can use a common behavior (e.g., wave hand
towards the speaker) that is well recognized (See Figure 9) to update the smart speaker with the current direction.
• Multiple users. When multiple users are present in different directions, the Speaker-Sonar recognizes the
direction of the users based on their movement. If more then one users are close together (e.g., side-by-side), the
system would not be able to recognize the number of users. However, such a case would not affect the consistency
check as any commands coming from the entire direction of movement would be considered legitimate.
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• Multiple users with a stationary user. A more complicated scenario is when a stationary user is with multiple
users. When a voice command comes from an active user, the system would consider the command legitimate as
it comes from a direction with movement. If the voice command comes from a stationary user with a recorded
direction, the system would consider the command legitimate. However, if the recorded direction is already
cleared, the stationary user would have to update the system with the current direction using a movement (e.g.,
wave hand).
•Multiple users with different privilege. The Speaker-Sonarworks by detectingmovements and cannot distinguish
multiple users; as mentioned before, our approach aims to make sure that a command is coming from a real user
(i.e., liveness detection). For differentiating users, we rely on voice fingerprinting features that are already built
into popular smart speakers (e.g., Google Home, Amazon Echo).
• Legitimate commands from more than 2 meters. Our system works within a 2 meter radius and can cause usability
issues to users who prefer to send commands from a far distance. To minimize the impact, we can perform the
consistency check for only critical commands; for non-critical commands (e.g., turning lights on or asking weather),
we can execute them, even when the user is outside of the 2 meter defense radius, and use the consistency check
result for only monitoring purpose. Our online survey (see Section 3) also shows that more than 80% of users of
both the Amazon Echo (84.5%) and Google Home (83.1%) do not feel uncomfortable coming closer (2 meters) to
the smart speakers to get protected while giving critical commands.
• Commands from non-line-of-sight location. Our system would reject commands coming from users at non-line-
of-sight locations as the system cannot detect the direction of the user’s movement. Such a scenario may impact
the usability of the smart speaker. Similar to the previous issue, legitimate commands from more than 2 meters,
we can minimize the impact by performing the consistency check for only critical commands.
• Privacy concerns. A potential concern is the user’s privacy as the Speaker-Sonar tracks the user’s direction for
consistency check. However, the privacy risk is minimal since the Speaker-Sonar only keeps the last direction
of the user; we do not record the history of the user’s direction. Moreover, the user’s direction calculated within
the smart speaker and never leaves it.
• Drawbacks of using ultrasonic sounds. Our approach is able to detect the user’s direction with ordinary speakers
because it uses ultrasonic sounds. However, constantly emitting ultrasonic sounds to the environment can be
disturbing to pets (e.g., dogs, cats) and to people who are concerned with health-related issues.
• Other movements in the smart-home environment. In common households, there can be other movements coming
from different sources; e.g., dog, cats, robot cleaner. However, such movements are usually closer to the floor.
For such scenarios, we rely on the microphone directivity model of SRP-PHAT-HSDA [35] and filter movements
coming from the floor. When the dog moves to a furniture and its movement gets detected, the attack remains
opportunistic as the attacker still needs to pass the consistency check.
• Tall objects. As our approach works by detecting movements, it can differentiate between tall object and a
human.

5 EVALUATION

We implemented a prototype of the Speaker-Sonar (Section 4) on top of a raspberry pi 3b, a matrix voice and an
omni-directional speaker; the setup of our system is similar to the common smart speakers in the market. Our
work answers the following research questions:
• RQ1: Is the consistency check performed by the Speaker-Sonar accurate?
• RQ2: Would the Speaker-Sonar work with real users?
• RQ3: Is the Speaker-Sonar effective in thwarting malicious commands sent from hacked network-connected
devices?
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Table 4. Accuracy of Consistency Check

Precision (%) in Different Distances

0.5m 1m 1.5m 2m 2.5m 3m

Walk-and-Sit

Pass 93 97 95 90 35 20
Reject 98 95 95 95 24 24

Walk-and-Stand

Pass

Pass by the Speaker 93 90 92 89 20 14
Toward the Speaker 93 95 95 90 38 12

Reject

Pass by the Speaker 97 97 95 92 35 18
Toward the Speaker 98 97 95 92 40 25

Total (%) 95 95 95 91 32 19

*Pass: Pass rate when legitimate commands are received. *Reject: Rejection when malicious commands are received.
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Bow (in the perpendicular direction)

Bow (towards the speaker)

Wave hand (in the perpendicular direction)

Wave hand (towards the speaker)

Walk (in the perpendicular direction)

Walk (towards the speaker)

Scratch head and put hands back down

Touch ears and put hand back down

Fetch something from table

Shake head

Pat belly

Precision %

2 m

1.5 m

1 m

0.5 m

Fig. 9. Direction Detection Accuracy of Common Behaviors

The experiment was done in a real living room area with a sofa, a coffee table, two end tables, and a chair (see
Figure 10). The Speaker-Sonar was placed on the coffee table without any objects blocking the speaker. All
experiments were done 100 times unless otherwise mentioned.

5.1 Effectiveness of Consistency Check

To answer RQ1., we check the accuracy of the consistency check and further conduct a series of evaluations to
provide micro-benchmarks. In our experiment, the Speaker-Sonar would pass the legitimate commands and
reject the malicious commands by comparing the direction of voice command and the user.
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Accuracy of Consistency Check. To measure the accuracy of the consistency check, we move into the defense
radius and say a voice command and check whether the Speaker-Sonar is able to detect it in real-time. Within
the defense radius, the user says a command following the two most common scenarios: walk-and-stand and
walk-and-sit. For walk-and-stand, we approach the smart speaker in two ways: 1) approach the smart speaker
directly facing it, 2) approach and pass the smart speaker keeping a distance. For walk-and-sit, we simply walk and
sit on the sofa next to the smart speaker. To check how the system performs in different distances, we repeated
the test from six different distances (0.5m, 1m, 1.5m, 2m, 2.5m, 3m) from the smart speaker. As shown in Table 4,
the Speaker-Sonar does perform well for both the pass and reject in different distance up to 2m. An interesting
result we see here is that, while reject success rate did not drop at 2m, pass success rate did drop. This is because
the pass test needs an accurate user’s direction to compare with the command’s direction in order to make the
correct decision. However, from 2.5m the accuracy significantly drops. This is because the signal becomes weak
starting from 2m and makes the system difficult to upkeep the high accuracy. Note that the angle between the
hacked speaker and the user was 135◦.
Micro-benchmarks. In the following, we share a series of evaluation results to understand the performance of
Speaker-Sonar.
• Accuracy of Direction Detection. To measure the accuracy of the direction detection, we perform 11 common
behaviors (e.g., wave hand, pat belly, shake head) from four different distances. As shown in Figure 9, larger
behaviors (e.g., wave hand and bow towards the speaker) were more precisely detected up to 2m compared to
smaller behaviors (e.g., pat belly, shake head). Similarly, behaviors towards the speaker were better detected than
perpendicular behaviors. Such results make sense as smaller behaviors and perpendicular behaviors create lesser
a doppler effect.
• Accuracy of Rejection in Different Angles. To understand how effectively consistency check rejects malicious
voice commands sent from different angles, we conducted more experiments as follows. As the hacked speakers
can be located in various angles from the user, we conducted the rejection test on 7 different angles (i.e., 10◦, 20◦,
30◦, 60◦, 90◦, 135◦ and 180◦). As shown in Figure 14, the Speaker-Sonar rejects malicious commands sent from
20◦ or more with high precision (over 90%); although the accuracy drops, our system is able to reject commands
coming from 10◦ to some extent. Such rejection accuracy of consistency check demonstrates that our defense
approach indeed raises the bar for a remote attacker that blindly (see Section 4.6) attacks the smart speaker.
• Impact of Reverberation. To measure how reverberation impacts the system, we repeat the previous test, the
accuracy of rejection from different angles, with the speaker placed 10cm from the wall. Surprisingly, as shown
in Figure 15, the accuracy was not impacted lesser than expected; the accuracy mostly dropped when the user
was at a closer distance (0.5m to 1m) from the smart speaker with small-angle difference (10◦ to 20◦) from the
hacked speaker. We carefully infer that the impact was minimal when the user was farther than 1m because the
reflected sound from the wall did not contain much doppler effect; in other words, the distance was too far for
the sound with doppler effect caused by the user to reach the wall and bounce back to the smart speaker. In
contrast, the accuracy dropped at closer distances because the doppler shift created by the user was able to reach
the smart speaker after being reflected from the wall.
• Impact of Small Objects. In addition to walls, interference and reverberation can also be caused by small objects.
To understand the impact, we placed small objects with different sizes and texture at 0.5m distance from the
smart speaker and did a consistency check by sending a voice command from 1m distance from the smart speaker.
Note that the small objects are not blocking the line-of-sight between the user and the smart speaker. As shown
in Figure 13, the impact on accuracy of consistency check was minimal.
• Impact of Different Furniture Density. To measure how different furniture density impacts the accuracy of the
consistency check, we repeat the walk-and-sit evaluation with objects such as a backpack, cup, laptop, tower fan,
air purifier and two plants with a vase in a room which looks like Figure 11 and Figure 12. Note that we did not
place large objects that are larger than the smart speaker in between the smart speaker and the user (or hacked
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Table 5. Accuracy of Consistency Check with Different Furniture Density

Precision (%) by Range

0.5m – 1m 1.5m – 2m

Walk-and-Sit

Pass 97 94
Reject 97 96

*Pass: Pass rate when legitimate commands are received. *Reject: Rejection when malicious commands are received.

speaker) as it is obvious that the system would not work without line-of-sight; the height of the recliner’s arm is
lower than the desk the smart speaker is placed. Because of the higher furniture density, we evaluate the system
with a walk-and-sit consistency check from two locations: the recliner next to the smart speaker (0.5–1m) and
from the sofa (1.5m–2m). As we see in Table 5, the results are comparable to Table 4. Such a result indicates that
different furniture density does not impact the accuracy as long as there is line-of-sight.
• Stationary Users. As mentioned in Section 4, a stationary user is handled by recording the last direction of the
user’s movement. We first evaluate the system by comparing the recorded direction with the direction of the
voice command sent by a stationary user, assuming that the timeout has not occurred. As expected, the result
was in line with Table 4. We then cleared the recorded direction, assuming that the timeout has occurred and
sent voice commands without moving, which were all rejected by the system as expected. However, as discussed
in Section 4.8, stationary users can easily update their current direction with well-recognized actions such as
wave hand (towards the speaker).

Fig. 10. Floor plan of Where Evalua-

tion was Conducted

Fig. 11. Floor plan with high

Furniture Density

5.2 Effectiveness with Users

To answer RQ2., with real users, we repeated the experiment summarized in Table 4 with slight modification; due
to the time constraint of the user study, instead of measuring the accuracy from all four distances, we used two
ranges, which are 1m to 1.5m and 1.5m to 2m. Similar to the experiment we conducted ourselves, the users were
asked to follow two types of actions (walk-and-stand and walk-and-sit); we also used the same angle (135◦) for
rejection test. The users were allowed to approach the smart speaker from any direction of the living room. Each
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Fig. 12. Picture of Floor plan with high Furniture Density

Table 6. Accuracy of Consistency Check with Users

Precision (%) by Range

1m – 1.5m 1.5m – 2m

Walk-and-Sit

Pass 96 92
Reject 98 97

Walk-and-Stand

Pass

Pass by the Speaker 94 90
Toward the Speaker 95 92

Reject

Pass by the Speaker 95 94
Toward the Speaker 96 95

*Pass: Pass rate when legitimate commands are received. *Reject: Rejection when malicious commands are received.
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Fig. 13. Accuracy of Consistency Check with Small Objects

user study took 45–60 minutes. In total, we tested our tool with 11 users of age 18 or older in a real living room
environment (see Figure 10). Also, for each user, every action was measured 10 times; in total, we collected 110
samples per action (11 users * 10 samples). As shown in Table 6, the result is comparable to the experiment we
have done ourselves (see Table 4). Note that the user study was approved by the Institutional Review Board (IRB).
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5.3 Effectiveness against Remote Attacks

To answer RQ3., we evaluate our system based on three scenarios: 1) send a malicious remote command in the
absence of a user, 2) send a malicious remote command in the presence of a moving user, 3) send a malicious
remote command in the presence of a user; the user is allowed to conduct any activities such as watching TV,
walking, reading books, etc.

For all three scenarios, we place four directional portable speakers, which we assume as the hacked speakers, in
a different part of the user’s room to send out malicious commands. The attacker is in another room with 4 laptops
which can send commands to each of the 4 speakers in the user’s room. For the first scenario, we randomly sent
out malicious commands 50 times while no users were in the defense radius. As expected, by 100% we were able
to reject the attack. To evaluate the second scenario, again randomly we sent out malicious commands 50 times
while the user was continuously moving in the room. As expected, when the user was continuously moving, the
rejection rate was again 100%.
For the third scenario, we add more requirements on top of the previous ones. The attacker neither knows

when the user will enter the room nor leave the room. The experiment was done for an hour and the user is
expected to spend 30 minutes in the room whenever he desires to. Within the hour, the attacker is allowed to
send at most 120 malicious commands to the user’s room. Likewise, the attacker was not able to successfully
launch any attacks.
As shown in Section 5, Speaker-Sonar indeed raises the bar higher for remote attacks and shows that such

attacks can effectively be defeated with the Speaker-Sonar.

5.4 Performance

To evaluate the performance of the Speaker-Sonar; we first measure the time taken for preprocessing (e.g., STFT,
windowing); second, we analyze the time taken for calculating the direction of the user’s movement and voice,
given the frequency spectrum from preprocessing (direction-analysis for short); third, given the direction of
user’s movement and voice, we measure the time taken for consistency check; lastly, we measure the response time
once the smart speaker is given a triggering word (e.g., “Alexa”). Response time is the total time taken which
includes preprocessing, direction analysis and consistency check. For evaluation, we gave 50 voice commands to
the Speaker-Sonar and measure the time taken per frame. For preprocessing and direction-analysis the average is
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calculated from 100 frames. The time taken for consistency check and response time is measured by getting the
average from 50 frames; this is because 50 commands trigger 50 times of consistency check.
In our evaluation, preprocessing took 0.015 ms; direction-analysis took 0.11 ms; consistency check only took

0.0003 ms; and finally, given the triggering word (e.g., “Alexa”) the response time of our system was 0.13 ms.

6 RELATED WORK

Smart speakers are becoming more ubiquitous as it is becoming the primary interaction medium between people
and machine (such as smartphone, personal voice assistant, smart home appliances etc.) [10, 13, 16]. Thus,
ensuring the authenticity of the voice commands leads to an active research area.
Attack on Voice Interface. Recently, a growing body of research has exploited the existing vulnerabilities that
lie in voice interface [39, 41, 63, 64]. Researchers, with their sophisticated innovations, craft attacks to exploit
vulnerabilities [40, 45, 60] in the voice interfaces (such as Google Assistant [16], Amazon Echo [4], Google
Home [17], Apple Homepod [9] etc.). Taking control or being able to inject malicious commands into the voice
interfaces enable the attackers to cause serious damage to the user (such as an unwanted purchase from the
online shop [5] and malicious interactions between other smart home devices). Prior research works showed
some serious attacks [29, 52, 70] which are very difficult to protect as those commands are incomprehensible to
human. Recently, there happened some unintentional incidents which reveal that the smart speakers are more
vulnerable to attacks [11]. Researchers demonstrated new techniques to execute a command in the smart speaker
which is very easy to design. Yuan et al. demonstrated an attack by embedding adversarial voice command into
a song which is recognized by the voice recognition system [69]. Besides causing serious security issues by
executing malicious commands, researchers found that user privacy and sensitive information can be leaked
through the smart speakers [32].
Defense on Voice Interface. While there are many pieces of research on attacks, little has been done to protect
voice interfaces against those attacks. As a consequence, voice interfaces are still vulnerable to state-of-the-art
attacks and can cause severe consequences to the user. Blue et al. propose to differentiate between human-
generated and machine-generated voice command based on the spectrum analysis [27]. This solution needs to
build a noise filter for each speaker during the initialization phase, while Speaker-Sonar can start the detection
immediately. VoiceGesture [71] extracted user-specific features in the doppler shift for live user detection. On the
other hand, researchers used captcha to authenticate the user when receiving a voice command [59]. However,
such solutions are intrusive in terms of user experiences as they ask the user to perform additional actions.
Alanwar et al. proposed EchoSafe which is a sonar-based defense mechanism against voice command attacks [22].
Whenever the room’s environment changes (such as the position of furniture and other objects), Echosafe fails to
perform accurately against the voice attacks. Because every time it needs to be trained for a particular orientation
of the room. However, Speaker-Sonar is not affected by the change of the rooms’ orientation. Furthermore,
Speaker-Sonar reaches high accuracy under different scenarios. Blue et al. propose 2MA [26], which also utilizes
the direction of arrival (DoA) of the voice commands to prevent remote attacks. However, 2MA requires multiple
devices for localization and assumes that the user is in constant possession of their mobile device. On the other
hand, our approach not only uses DoA of voice but also the movement of users and only requires a single speaker
and a microphone array.
Presence detection. Researchers are able to identify the presence of people in a room with a wireless motion
sensor, door sensors [44, 67]. Moreover, recent works [66] are able to compute the total number of people in
a room with the help of some external hardware devices. However, Speaker-Sonar is successful in detecting
human presence without the need of deploying a sensor in the room environment.
Sonar-based Localization. There is a significant amount of research [24, 25, 43] conducted using RF for lo-
calization and activity recognition. Furthermore [57] conduct sonar-based localization with ultrasonic sound
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utilizing special equipment (e.g., Sterling Audio ST55, Harman Kardon SoundSticks, etc.). However, not much
work has been done with ultrasonic sound using commodity devices. [48] uses smart TV’s and speakers to
localize human over barriers but masks the transmit signal (i.e., audible) using music. [36] uses ultrasonic sound
using the speaker on a laptop to infer various gestures of a moving object, [53] detects human motion with
ultrasonic sound. Compare with the prior works [22], Speaker-Sonar does not require to retrain every time the
environment changes.

7 CONCLUSION

In this work, we propose the Speaker-Sonar, a sonar-based defense system for smart speakers. Our defense
system aims to protect the smart speakers from remote attackers that leverage network-connected speakers
to send malicious commands. The key idea of our approach is to make sure that the voice command is indeed
coming from the user. For such purpose, the Speaker-Sonar emits an inaudible sound and tracks the user’s
direction to compare it with the direction of the received voice command. The Speaker-Sonar is non-intrusive
in terms of user experience as the defense works automatically doing a simple consistency check. The system we
built can be generalized to smart speakers as we use similar hardware without using special equipment (e.g., RF
transmitter). The Speaker-Sonar raises the bar for remote attacks and is able to effectively tackle all known
attacks techniques that can be used for creating malicious voice command attacks to the best of our knowledge.
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A APPENDIX

A.1 Signal Processing Prerequisite

Here we describe the concepts that are necessary to understand how signal (time-domain) can be processed
to frequency spectrum (frequency domain). The frequency spectrum is the power spectrum of a time series
input which describes the distribution of power into frequency components composing that signal [56]. Thus
the spectrum provides a method to analyze a signal in terms of its frequency. For example, Figure 16 shows
the frequency spectrum of a sound signal that was received by our microphone array; the left side of the figure
(i.e., low frequency) is the audible sound which we use to perform sound source localization, and the right side
(i.e., high frequency) is the inaudible sound we use for movement detection. The frequency spectrum of the
sound wave can be obtained by Fast Fourier Transform (FFT) algorithm which samples a signal over a period
of time which divides it into its frequency components [38]; the result of FFT is a single sinusoidal oscillation
at distinct frequencies each with their own amplitude and phase [61]. For detecting movements (e.g., moving
cars, human activities), as motion happens in a very short time, short-time Fourier transform (STFT) needs to
be used which converts a short time sound signal from its time domain to frequency domain. STFT divides a
longer time signal into shorter segments of equal length and then compute the FFT separately on each shorter
segment [23]; the shorter segment is called frame and the amount of overlap is called hop. Revealing the spectrum
on each shorter segment (frame) is helpful for processing movements because motions (i.e., and its spectrum)
changes in a very short time. Using a shorter frame provides a finer and smoother movement detection result. To
resolve problems such as spectral leakage which is caused by finite-length sampling, during windowing STFT a
windowing function is multiplied to each frame [58]. Besides reducing spectral leakage, windowing function
plays an important role in spectrum analysis as it helps to get the appropriate frequency spectrum for various
purposes. In addition, filtering is another important concept which removes unwanted frequency components
from a frequency spectrum. A high-pass filter (HPF) passes signals with a frequency higher than a certain cutoff
frequency and attenuates signals with frequencies lower than the cutoff frequency [49]. Similarly, a low-pass
filter (LPF) passes frequencies lower than a cutoff frequency and attenuates frequencies lower than the cutoff
frequency.
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Table 7. Survey result of the distance (in meter) of the user when talking to Alexa and Google Home

Distance 0 1 2 3 4 5 6 7 8 9 10
Alexa 7 57 73 45 17 5 6 - 1 1 2
Google 8 77 61 39 14 14 12 2 2 3 6

Distance 11 12 13 14 15 16 17 18 19 20 21
Alexa 1 - - - - - - - - 2 -
Google 2 2 2 2 5 1 1 1 1 1 -

A.2 Evaluation: Supplemental Information

Departure Detection. As we discussed in Section 4, departure detection aims to detect obvious departure of
a user for an immediate update on the departure status. To evaluate departure detection, we enter the defense
radius and then leave after 30 seconds. The Speaker-Sonar was able to detect the user leaving the radius from
less than 1m from the speaker with the accuracy of 92%; when leaving the radius from 1.5m, the accuracy dropped
to 83%; leaving from 2m is not considered in our scenario as it is ambiguous to say that the user entered defense
radius.

A.3 Survey: Supplemental Information

Demographic Information. The Alexa survey’s participants’ has diverse age level (27.6% are 26-30, 19.6% are
31-35, 16.1% are 21-25, 13.6% are 46 or older, 9.5% are 36-40, 7.5% are 41-45). 48.7% of them are female, 50.8%
of them are male, 0.5% of them are others. They have diverse education levels (47.7% are bachelor, 16.6% are
graduate, 16.6% are some college - no degree, 10.6% are high school graduate, 7% are associates, 1% are some
high school, 0.5% are no high school). Similarly, the Google Home participants’ also has diverse age level (25.9%
are 26-30, 24.1% are 21-25, 17% are 31-35, 12.3% are 46 or older, 10.8% are 36-40, 5.7% are 41-45, 4.2% are 18-20).
43.9% of them are female, 54.7% of them are male, 0.5% of them are others. They have diverse education levels
(48.1% are bachelor, 13.7% are graduate, 18.9% are some college - no degree, 9% are high school graduate, 9% are
associates, 1.4% are some high school).
Limitations. The survey participants are recruited from Mturk, and the population distribution may not be the
same as the smart speaker users. Another thing is that these results are self-reported, and might not represent
the daily behaviors of the users, for example the real usage of the smart speakers, and the real reactions when
they use the defenses. The results we get might be biased because of these factors. To minimize the biases, we
design the questions carefully, and didn’t mention things relevant to the security research we are doing, so that
participants might not be leaded to think more about security than they usually do.

Sample Survey Questions

(1) What Virtual Personal Services do you use at home?
(a) Google Home
(b) Amazon Alexa
(c) Both
(d) Other

(2) Approximately now long have you used Alexa or Google Home?
(a) 0 - 3 months
(b) 3 - 12 months
(c) 1 - 2 years
(d) 2 - 3 years
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(e) 3+ years
(3) Are you in the same room when you interact with Google Home or Alexa?
(a) Always in the same room
(b) Always in the different room
(c) Sometimes in the same room, and rest of the time in the other room
(d) I don’t remember

(4) How far away are you from Google Home or Alexa when you interact with it?
(5) How many Google Home or Alexa devices do you have in your home?
(6) How many voice commands do you make during a day?
(7) Do you use sensitive voice commands daily? For example, "unlock my door"
(a) Yes
(b) No
(c) I’m not sure

(8) Please let us know if you are comfortable with the following scenarios. You need to come within 2 meters
from the smart speaker to give a voice command.

(a) Very uncomfortable
(b) A little uncomfortable
(c) Neutral
(d) Comfortable
(e) Very comfortable

(9) Please let us know if you are comfortable with the following scenarios. The smart speaker will track your
location for better usability. For example, the smart speaker can detect if you are not around to see if the
light needs to be turned off.

(a) Very uncomfortable
(b) A little uncomfortable
(c) Neutral
(d) Comfortable
(e) Very comfortable

(10) Please let us know if you are comfortable with the following scenarios. When you make a critical voice
command such as transfer money, checking bank balance etc., the smart speaker will track the location of
the user to provide protection. Note that the tracking is done within the speaker and the tracked data does
not leave the speaker. Also, the speaker does not save or use continuous location but only the momentary
location.

(a) Very uncomfortable
(b) A little uncomfortable
(c) Neutral
(d) Comfortable
(e) Very comfortable

(11) Please let us know if you are comfortable with the following scenarios. To be protected while making a
critical command (e.g., send money to friend, open the front door), you need to come within 2 meters from
the smart speaker.

(a) Very uncomfortable
(b) A little uncomfortable
(c) Neutral
(d) Comfortable
(e) Very comfortable
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