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Abstract
The increasing prevalence of software vulnerabilities ne-

cessitates automated vulnerability repair (AVR) techniques.
This Systematization of Knowledge (SoK) provides a compre-
hensive overview of the AVR landscape, encompassing both
synthetic and real-world vulnerabilities. Through a systematic
literature review and quantitative benchmarking across diverse
datasets, methods, and strategies, we establish a taxonomy of
existing AVR methodologies, categorizing them into template-
guided, search-based, constraint-based, and learning-driven
approaches. We evaluate the strengths and limitations of these
approaches, highlighting common challenges and practical
implications. Our comprehensive analysis of existing AVR
methods reveals a diverse landscape with no single “best”
approach. Learning-based methods excel in specific scenarios
but lack complete program understanding, and both learning
and non-learning methods face challenges with complex vul-
nerabilities. Additionally, we identify emerging trends and
propose future research directions to advance the field of AVR.
This SoK serves as a valuable resource for researchers and
practitioners, offering a structured understanding of the current
state-of-the-art and guiding future research and development
in this critical domain.

1 Introduction

The relentless increase in software vulnerabilities poses a
critical challenge for organizations, with consequences rang-
ing from financial loss to reputational damage [1, 2]. This
challenge is compounded by the limitations of manual repair
processes, which are often slow, error-prone, and struggle to
keep up with the volume of necessary fixes. Furthermore,
numerous known vulnerabilities remain unpatched for ex-
tended periods, leaving systems exposed [3–5]. Automatic
Vulnerability Repair (AVR) has emerged as a vital field to
address these challenges, offering the potential to significantly
reduce the time and resources to mitigate security risks.

AVR has witnessed significant progress, evolving from
the template-based approach that applied predefined repairs

(often inflexible), random mutation, to more sophisticated
approaches [6–8]. For example, constraint-solving techniques,
often deriving constraints from symbolic execution, can be
computationally expensive [9, 10]. Deep learning offers an
end-to-end translation approach, but its effectiveness hinges on
high-quality vulnerability repair datasets [11–13]. Currently,
large language models (LLMs) show promise due to their vast
training data, although limitations persist in function-level
repairs and comprehensive program understanding [14–16].

Given the rapid growth of this field, a SoK is crucial to
understand the landscape. This SoK aims to: (1) Bridge
knowledge gaps by analyzing AVR approaches across syn-
thetic data and real-world vulnerabilities. (2) Offer critical
insights into the strengths and limitations of current work.
(3) Propose promising future research directions. In this pa-
per, we establish a taxonomy of existing AVR methodologies,
grounded in fundamental principles, and conduct a quantita-
tive comparison of current approaches. This SoK provides a
comparative analysis of security patch generation methods,
complexity levels, impact factors for successful repair, and
vulnerability types, revealing a multifaceted landscape. We
assess both synthetic and real-world vulnerabilities, finding
no definitive “best” method; each has inherent limitations. For
example, learning-based methods lack whole-program under-
standing, while non-learning methods struggle with precise
constraint extraction, e.g., loop invariant synthesis. Based on
our taxonomy and benchmarks, we analyze current research
advancements, theoretical challenges, and future directions in
AVR. Our findings indicate that performance across existing
works varies significantly depending on the benchmark used,
which often suffer from limited data points. We propose sev-
eral compelling research directions to advance AVR, including
the integration of hybrid approaches, interpretability of AVR,
and the generation of high-quality specifications.

This SoK benefits both experts and practitioners. For se-
curity engineers, it provides (1) a systematic taxonomy to
understand existing research; (2) analysis for leading repair
methods; and (3) insights into limitations and future potential.
Practitioners gain (1) a concise problem definition of vulnera-



bility repair and (2) a comprehensive evaluation with practical
implementations of key approaches. In summary, we have the
following key contributions:
• We define the core problem of security vulnerability repair

and provide a comprehensive taxonomy and comparative
analysis of repair approaches (Section 3), with a focus on
patch generation techniques (Section 4). This discussion
culminates in actionable takeaways and clearly identified
open research questions.

• Our taxonomy classifies security patch generation ap-
proaches by 4 categories, 5+ strategies, 11+ methodologies,
5+ programming languages, and 12+ vulnerability types.

• We conduct quantitative evaluations of existing methods
across C/C++ and Java benchmarks. We synthesize practical
implications and highlight prevalent challenges in AVR,
offering a critical assessment of the field’s progress.

• We explore the latest research trends, identify ongoing
challenges and propose directions for future work. Through
quantitative and qualitative analysis, we highlight gaps in
current techniques and extract key findings to guide future
advancements in AVR. We will keep our website ( http
s://sok-avr.github.io/) updated with all the latest
studies and findings to promote the research in this field.

Related Work. This study mainly differs from existing sur-
veys in the following three aspects: (i) Existing works [17–23]
focus on program repair from a general perspective rather
than a security-specific one. For instance, Huang et al.[22]
briefly discusses security vulnerabilities in the context of
learning-based methods, Monperrus et al.[19] include only
a subset of AVR-related papers, and Pinconschi et al. [20]
demonstrated that general program repair tools perform poorly
on vulnerability repair. These gaps highlight the need for our
security-focused analysis. (ii) existing surveys on vulnera-
bility repair focuses on LLM for AVR [14, 24], however,
traditional methods (e.g., constraint-based methods) for AVR
continue to evolve and demonstrate effectiveness in recent
research [25, 26]; (iii) Prior surveys lack a systematic com-
parison across different AVR approaches. Our study bridges
these gaps by providing both quantitative benchmarking across
diverse datasets and qualitative analysis of various approaches,
enabling researchers to better understand the current landscape
and identify promising future research directions in AVR.

2 Preliminaries and Problem Setup

Figure 1 shows the timeline from vulnerability discovery
to CVE publication and vulnerability repair process. The
timeline from vulnerability discovery to CVE publication
typically involves several key stages. Initially, the exact dis-
covery time of a vulnerability is often unknown. CVEs are
usually published after a vendor releases a patch, but in urgent
cases or due to lack of cooperation, they may be disclosed
before a patch is available. A vulnerability is classified as a
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Figure 1: The timeline of vulnerability discovery, patch release,
and exploit publication.

zero-day until a patch is released, after which it becomes an
N-day vulnerability. The main goal of AVR is to minimize
the vulnerability exposure window. The vulnerability repair
workflow includes three key components: vulnerability local-
ization (VL), security patch generation (SPG), and security
patch validation (SPV). Below we detail each repair stage and
further illustrate its relationship to program repair.

2.1 Vulnerability Localization
VL identifies the precise location or source of vulnerabilities
within an application. This process involves pinpointing spe-
cific program points (i.e., specific locations within a program,
e.g., lines of code, statements) where vulnerabilities exist and
can be exploited, and then finding the point at which the “root
cause” of the bug can be fixed [27].

Definition 1. We denote 𝑃 as an original vulnerable
program. Given 𝑉 as the set of identified vulnerabilities
within 𝑃, each vulnerability 𝑣 ∈ 𝑉 is associated with a subset
of program points 𝑃𝑇𝑣 ⊆ 𝑃𝑇 , where 𝑃𝑇 is the set of all program
points in 𝑃. The vulnerability localtion 𝐿 is the exact program
point where the vulnerability 𝑣 manifests can be fixed.

Accurately locating vulnerabilities is crucial for AVR, as
crash points often differ from actual vulnerability locations,
which are actionable for patching [27]. Early methods used
slice-based VL: (1) static slicing analyzes control and data flow
dependencies through dependency graphs but often includes
irrelevant statements [28]; (2) dynamic slicing [29] records
execution-specific data and control flow to extract relevant
statements for given inputs [30]. Further, program state-based
methods (e.g., delta debugging [31]) analyze runtime state
changes by comparing states from successful and failed execu-
tions to pinpoint root causes. However, these methods are com-
putationally expensive. In contrast, spectrum-based methods
efficiently locate faults using only test coverage information
by analyzing statement execution patterns in failed/passed
tests and calculating suspiciousness scores [32].

Statistical reasoning like ConcFuzz [27], combines fuzzing
near exploit paths with statistical analysis for precise VL.
Building on this, learning-based methods further improve
detection. For example, Xu et al. [32] locates vulnerabilities
using reinforcement learning-guided fuzzing to generate coun-
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terexamples, combined with spectrum-based methods for VL.
Recently, LLMs have shown potential in VL, Zhang et al. [33]
transforms the VL task into a sequence labeling problem,
where each line of code is classified as either “vulnerable” or
“non-vulnerable”, which has achieved 82.0% F1 score.

2.2 Security Patch Generation
A security patch is created to fix existing vulnerabilities, with
the goal of making the program secure after applying it [34]. In
contrast, non-security patches address issues like functionality
bugs, feature updates or performance improvements. SPG is
the process of creating critical patches for vulnerable code
segments to effectively repair existing vulnerabilities.

Definition 2. Given a vulnerable program 𝑃,with identified
vulnerabilities 𝑉 at the specific locations 𝐿, a security patch
𝑃′ is a modified version of 𝑃. The process of generating
𝑃′ involves modifying 𝑃 at each location 𝑙 in 𝐿 to fix the
vulnerabilities present at that location.

2.3 Security Patch Validation
After generating security patches, the pivotal step is to verify
the if the patchfixes the given vulnerability without introducing
any new bugs [35, 36] while maintaining correct program
behavior [37, 38]. We define SPV as:

Definition 3. 𝑆𝑃𝑉 (𝑃,𝑃′) evaluates if 𝑃′ meets the follow-
ing criteria: (i) fix the given vulnerability in 𝑃; (ii) ensure no
new bugs or vulnerabilities are introduced; (iii) preserve the
original functionality of 𝑃. If all these three conditions are
satisfied, the patch is deem to be an effective security fix.

Li et al. [3] found approximately 12% of security patches
are defective - with 7% fail to fully fix the target vulnerabil-
ity, while 5% introduce new ones. The validation employs
three main approaches: (1) Static analysis using code fea-
tures [39, 40], expert rules [41], etc. to assess patch correctness
without execution. For example, S3 [40] prioritizes patches
by analyzing six static features measuring syntactic and se-
mantic differences from buggy code; (2) Dynamic testing
through test cases/exploits [42–45], execution traces [46] to
test the patched code for verifying expected behavior; and (3)
Formal methods [47, 48] like PATCHVERIF [47] used sym-
bolic execution and physical invariant checks verify whether
patch-introduced behavioral modifications meet expectations.
Nowadays, LLMs like LLM4PatchCorrect [49] have been ap-
plied to predict patch correctness using contextual information
from execution traces, bug descriptions. Despite this, human
effort is still required in some AVR works (See in Section 3).

2.4 Security Vulnerability Repair
Problem Definition. Security Vulnerability Repair (SVR)
involves generating 𝑃′ by modifying a vulerable program 𝑃 at
identified locations 𝐿 to fix vulnerabilities 𝑉 , ensuring that 𝑃′

satisfies the correctness criteria 𝐶. The objective is to find an
appropriate repair function 𝐹 that meets these requirements
and 𝑆𝑃𝑉 (𝑃,𝑃′) == 𝑇𝑟𝑢𝑒.

The three key statges of SVR (i.e., VL, SPG, and SPV)
work in tandem to ensure effective SVR. VL identifies the
exact program points 𝐿 of vunlnerabilities𝑉 , providing inputs
for SPG to generate patches that transform the vulnerable
program 𝑃 into repaired program 𝑃′. SPV verifies that 𝑃′
fixes the vulnerabilities,preserves functionality, and introduces
no new issues. These stages are interdependent, as errors in
localization can propagate through SPG, while SPV feedback
guides earlier steps, ensuring an iterative and reliable SVR.

2.5 Automatic Vulnerability Repair v.s. Auto-
matic Program Repair

AVR is a subset of Automatic Program Repair (APR).
While both aim to automate the repair process and share
fundamental stages—localization, patch generation, and patch
validation—they differ significantly in principles, assumptions,
and input settings, particularly during the patch generation
phase, which introduces unique challenges for AVR.

APR primarily targets general software issues, such as
functional bugs [50, 51] and compilation errors [52–54]. In
contrast, AVR focuses on vulnerabilities, requiring patches
that both eliminate exploitable behaviors and preserve the pro-
gram’s functional invariants. This dual requirement introduces
additional complexity to the repair synthesis.

APR and AVR also differ in their assumptions. Traditional
APR assumes program correctness can be fully captured
through comprehensive test cases, while AVR relies on spe-
cific security properties and exploit conditions. Despite this
difference, both approaches share the belief that effective re-
pairs can be derived from patterns observed in historical fixes,
enabling learning-based approaches in both fields.

The distinction in assumptions is most evident in their
input requirements. APR typically relies on test suites to
guide the repair process, while AVR operates with a single
Proof-of-Concept (PoC) exploit that demonstrates the vulner-
ability. This limited information introduces unique technical
challenges for AVR, as it must simultaneously ensure vul-
nerability elimination and functionality preservation without
comprehensive test coverage.
3 Taxonomy of Automatic Vulnerability Repair

Approaches

Selection Methodology. We conducted a systematic literature
search focused on AVR using four search queries: “security
patch generation”, “vulnerability repair”, “program repair +
vulnerability” and “vulnerability patching”. The search was
performed on cspapers.org automatically, limiting results
to the domains of Computer Security, Software Engineering,
and Programming Languages. Initial results yielded 4,883
unique papers published between 2018 and 2024.9. To increase

cspapers.org


Table 1: Properties and References of Security Patch Generation Approaches.
Category Strategy Methodology Language 1 Fix Level 2 Repair Input 3 Vulnerability Target 4 Test Suites 5 References

Template
Guided

C/C++ S FC GN % [55]
C/C++ S S Buffer Overflow % [6, 56–58]
C/C++ S P Memory Error % [7, 59–61]
C/C++ S P Integer Overflow % [62, 63]
C/C++ S S Integer Overflow % [8, 58]

Vulnerability Rust S P Buffer Overflow % [64]
Property C/C++ S FC Error Handling Bugs % [65]

Solidity BT FC Reentrancy, Acc Ctrl, Arithmetic, Uncheck LL Calls % [66–68]
Solidity S FC Arithmetic, Reentrancy % [69]

Template Solidity S S, FC, P Reentrancy, Miss.Input.Vald., Lock.Ether, Unhandl.Except. % [70]
Construction Java S S SQL Injection % [71]

Java S P Null Pointer Deref. % [72]
/ S S Denial of Service % [73]

Java S P Cryptographic Misuses % [74, 75]
Summaried Java S P GN % [76]

From Java S S GN % [45]
Patches C/C++/Java S P Null Pointer Deref. % [25]

C/C++ B P GN % [77]

Search
Based

Random C/C++ S S GN " [41, 78–81]
Mutation C/C++ S P GN " [10]

Mutation Java S FL Null Pointer Excep. " [82]
Based Pattern C/C++ S P Information Flow Leakage % [83]

Driven Java S P Null Pointer Excep. % [84]
Mutation Solidity S P GN % [85]
Security PHP S P Injection Vulnerabilities % [86]

Semantic Patch C/C++ S S GN % [87, 88]
Code Transplantation C/C++ S P GN " [89]

Search PHP S S Access Control Bugs % [90]
Code C/C++ B FC GN % [91]

Similarity Java S S Null Pointer Deref. % [92]
C/C++ S S Resource/Memory Leak, Null Pointer Deref. % [92]

Constraint
Based

C/C++ S FC Memory Leak " [93]
Static C/C++ B FC GN " [94]

Analysis / S P Null Pointer Deref., Data Leakage % [95]
C/C++ S P Null Pointer Deref., Data Leakage % [25]

Constraint / S S Denial of Service " [96]
Extraction C/C++ S FC GN " [97–99]

Symbolic C/C++ S P GN " [9]
Execution C/C++ S S GN " [100, 101]

C/C++ B FC GN % [102]
Dynamic C/C++ S P GN " [9, 103]
Analysis C/C++ S P GN " [104]

C/C++ B FC GN % [91]
Formal C/C++ S P GN " [10]

Methods / / / Trigger Action Programming " [26]

Learning
Based

Training Deep Learning C/C++ S FC GN % [13, 105]
Java S S GN % [12]

Fine-tuning Adaption C/C++ S S GN % [106]
Interaction C/C++ S FC GN % [107]

Prompt Zero-shot C/C++/Java S FC GN % [14, 15, 108–112]
Engineering Few-shot C/C++ S FC GN % [16, 113]

Chain-of-thought C/C++/Java/Solidity S FC GN % [114–117]
LLM Multi-LLM C/C++/Java S FC GN % [118]
Integration LLM-External Tool C/C++/Java S FC GN " [117, 119]

1 Language: Programming language that SPG method targets at, “/" indicates no specific language is targeted or not a programming language.
2 Fix Level: The level at which security patches are generated: "S" for source code level, "B" for binary, and "BT" for bytecode.
3 Repair Input: Granularity of Input considered for SPG, from statements (S), functions (FC), and files (FL), to projects (P).
4 Vulnerability Target: Classifies methods by the vulnerabilities they address. “GN” means not target specific vulnerabilities.
5 Test: Whether test suites are required for SPG. “"” indicates test suites are needed, “%” means they are not.

relevance, we applied filtering criteria requiring papers to have
a relevance score above 0.5 and contain at least one of the fol-
lowing keywords in their abstracts: “security”, “vulnerability”,
“repair”, “patch”, or “fix”. This filtering process resulted in 267
unique papers. These papers underwent detailed review by two
authors, spending about 45 minutes per paper to determine
if the paper targets AVR, with weekly consensus meetings to
resolve disagreements. Through this manual review process,
we identified 23 core papers for AVR. Finally, we applied both

forward and backward snowballing like [120, 121] to examine
referenced and citing papers, identifying additional 56 AVR
papers, which cross 2006 to 2024.9, the process terminated
when no new methodologies, strategies, programming lan-
guages on AVR were found in two consecutive iterations. The
final collection comprises 79 papers, with 67 ranked A/A*
on CORE2023 [122], a computing research venue ranking
system where A/A* represents the top 20% venues.

Analysis Methodology. To analyze each paper, we em-
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Figure 2: Taxonomy of Automated Vulnerability Repair approaches. Boxes with blue background present the taxonomy of
security patch generation methods. Boxes with green background show the taxonomy of security patch validation approaches.

ployed a systematic approach to analyze each paper, exam-
ining three key dimensions: (1) The core components and
methodologies used in AVR; (2) The effectiveness and target
vulnerabilities types; (3) The strengths and limitations of
each approach. We analyze each paper using a standardized
rubric evaluating technical architecture, vulnerability types
addressed, repair strategies with their theoretical foundations,
experimental validation, and limitations. Uncertainty and in-
consistencies were resolved through group discussion. This
analysis revealed fundamental distinctions between learning-
based and non-learning approaches. Within non-learning
approaches, we identified three distinct categories: template-
guided approaches using predefined templates, search-based
approaches exploring security patch spaces or vulnerable
states, and constraint-based approaches that formalize repairs
through constraint extraction and solving. Further analysis
within each category revealed distinct strategies, leading to
our complete hierarchical taxonomy.

Figure 2 presents a hierarchical taxonomy, categorizing
repair approaches into SPG and SPV (assuming successful
vulnerability localization). SPG approaches are further classi-
fied into three levels: (i) broad categories (Template-Guided,
Search-Based, Constraint-Based, and Learning-Driven), (ii)
specific strategies within each category, and (iii) core method-
ologies. A detailed analysis of these approaches is provided in
Section 4. SPV, classified into manual check, static analysis,
dynamic analysis, and formal verification, shows a strong pres-
ence of manual in AVR practices (56 out of 79 AVR papers),
either as a standalone approach or in combination with other
methods. While VL is a critical prerequisite step for AVR,
AVR papers often stress their core contribution to SPG, with
15 papers even assume known vulnerability locations.
Properties of Security Patch Generation approaches. From
Table 1,we observe different features underdifferent categories.
For Language, 66 out of 79 papers focus on C/C++/Java,
others focus on other languages (e.g., Rust). Notably, one
paper [26] focus not on programming language but on natural

language. This language distribution aligns with real-world
trends: C/C++ dominate memory-safety issues [123, 124],
while Rust sees limited AVR coverage due to its newness. For
Fix Level, only 4 provide AVR at the binary level, despite
the importance of binary-level defense in deployed software
systems [125]. Notably, 3 out of 6 non-learning-based studies
on Solidity focus on bytecode-level instead of source-code
level due to source code availability (0.3%) [68]. For Repair
Input, current learning-based methods typically operate at
statement-level or function-level repair input. This contrasts
with other approaches, which offer support across all four input
levels for repair, depending on the specifics of their imple-
mentation. Additionally, in the process of generating security
patches, both learning-based and template-guided methods
do not require the involvement of test cases or exploits. In
contrast, other approaches may necessitate test cases/exploits,
depending on their specific implementation details. For Vul-
nerability Target, 85.71% of the template-guided methods
target one or more specific vulnerability types.

Various methods exhibit distinct strengths and weaknesses
across different properties. For example, source-code level
fixes are more straightforward but binary-level fixes save
compilation time [77]. Function/statement-level repair input
is faster than program-level but lacks global program con-
text. Among 16 papers targeting specific vulnerabilities in
C/C++, 62.50% focus on memory-related vulnerabilities such
as memory leak and buffer overflow, which are crucial be-
cause exploiting them could give attackers access to the whole
system [126]. However, few works focus on logic vulnerabili-
ties, which are equally important, if not more so (e.g., DAO
attack [127] results in $8.5 million ETH loss). Detailed pros
and cons of each method will be discussed in Section 4.

4 Security Patch Generation Approaches

In this section, we present typical SPG approaches: Template-
Guided, Search-Based, Constraint-Based, and Learning-



Driven methods. We conclude each subsection by highlighting
the Takeaways and Open Problems in this section.

4.1 Template-Guided
Template-Guided approaches for SPG rely on predefined repair
templates or safety properties derived from human expertise
and vulnerability characteristics. Their efficacy depends on the
accuracy and coverage of the identified templates or properties,
which determine the scope and precision of vulnerabilities
that can be fixed. This section explores how various research
efforts define and utilize these templates or properties to
remediate security vulnerabilities.
A. Template Construction. There are two main directions
for constructing the template:

A1. Templates based on Vulnerability Property. Different
types of vulnerabilities have unique root causes and char-
acteristics. Customizing security properties to address these
facilitates the development of efficient repair templates. This
approach ensures that each vulnerability is treated with a
strategy that aligned to its nature. Initially, Weimer [55] pro-
posed using an abstract behavioral model to generate security
patches. Later, AutoPag [6] developed templates specifically
for out-of-bound vulnerabilities, but it was only applicable
when the vulnerability and the fix location were in the same
function. Shaw et al. [56] focused on replacing unsafe APIs
with safer alternatives to fix buffer overflows, but this template
is effective only when the vulnerabilities are directly intro-
duced by these unsafe APIs. Furthermore, BovInspector [57],
Senx [58], and INTREPAIR [63] utilized safety properties of
corresponding vulnerabilities related to specific vulnerabilities
to derive patches, including buffer overflow, bad casts, integer
overflows, and dangling pointers. Besides repairing statically,
Exterminator [7] fixes memory bugs at runtime without re-
quiring source code changes. Besides memory vulnerabilities,
RegexScalpel [73] applies predefined repair templates (e.g.,
modifying quantifiers) to fix Regular Expression Denial of
Service (ReDoS) vulnerabilities (e.g., nested quantifiers).

Templates derived from vulnerability properties can be
represented or mined from various program analysis graphs
(e.g., control flow graph, program dependency graph, abstract
syntax tree (AST)) [128, 129]. These approaches primarily
involve traversing the graph and modifying elements in fixed
locations within the graph to achieve security patch generation.
The basic idea has been used to fix common vulnerabilities,
including memory management bugs (e.g., memory leak,
double free, use after free [59, 61]), error handling bugs [65],
null pointer dereferences [72], and integer overflows [8, 62].
Furthermore, SAVER [60] formulated the vulnerability fix the
problem as a graph labelling problem to implement fixes.

Although the above researches have defined patterns to
fix buffer overflow in C/C++/Java, the approaches cannot be
directly used for fixing Rust buffer overflow vulnerabilities

due to its unique language features like ownerships and life-
times [130]. Also, Rust vulnerabilities arise from interactions
between its safe and unsafe sub-languages [131–133]. Ru-
pair [64] defines the patterns to rectify the vulnerabilities by
semantics-preserving program transformations. Similarly, the
approaches are also not applicable on Solidity due to their
domain-specific vulnerabilities, such as reentrancy attacks,
gas limit issues, which are not common in other languages
in traditional software. SGUARD [69] and CONTRACT-
FIX [70] apply fixing templates to the source code to ensure
the smart contract is free from those vulnerabilities, while
EVMPatch [67], Smartshield [66], and Elysium [68] operates
on bytecode level. However, they follow similar strategies,
for example, SGUARD [69] add nonReentrant modifier for
reentrancy vulnerabilities, EVMPatch [67] added checks to
verify the caller’s address or permission on bytecode level.

A2. Templates Summarized from Patches. Different from
templates guided by vulnerability properties, templates sum-
marized from existing patches focus on generalizing success-
ful strategies from real-world fixes. PAR [45], Vurle [76],
Seader [75], and CONCH [25] summarized fix templates
from patches for SPG. Ma et al. [74] summarized crypto-
graphic misuses and corresponding fix patterns in Android.
E9PATCH [77] defines four tactics for binary rewriting, prov-
ing effective in repairing vulnerabilities in binaries.
B. Template Application. Once constructed, the template is
applied for patch generation. Note that not all templates are in
source code format. When a template is not in source code, it
must be mapped to concrete expressions (e.g., Senx [58]) to
facilitate the generation of a patch in source code.
Takeaway I. A template, whether enforcing security properties
or serving directly as a repair template, often incorporates heuris-
tic rules to address specific vulnerabilities or security property
violations. This approach is effective to fix vulnerabilities that
require minimal changes, have limited context dependency, and
have clear root causes, such as switching to safer APIs or changing
array sizes. While template-based methods lack flexibility, they
are still a great starting point when applied to new contexts, such
as binary-level repair [77]. Furthermore, templates can work
with other repair methods throughout the AVR process, such as
by extracting specific types of constraints [9] to enhance SPG.

Open Problems I.
• Template Mining: Most current template-guided AVR methods

rely on hard templates (pre-defined and unchanging repair
strategies)(e.g., [45, 60, 64, 66, 67, 69, 70]). While same
type vulnerabilities often follow shared patterns, their specific
manifestations can vary due to evolving contexts or exploitation
techniques, necessitating flexible soft templates [45, 66, 76].
While existing research on patch generation explores using
models to create repair templates, vulnerabilities often involve
complex dependencies that require more flexible approaches.
Thus, a soft template mining method is urgently needed.

• Security Property Inference: Security properties [58] can be



viewed as templates to enforce stringent security conditions.
Unlike typical fix templates, they guide other methods (e.g.,
solvers) to generate patches that meet complex requirements,
such as sequence dependencies. Inferring these properties from
various sources is essential for ensuring robust SPG.

4.2 Search Based
Heuristically search-based SPG is guided by defining heuristic
rules to search and generate patches [134]. Two primary ap-
proaches within this category are mutation-based and semantic
code search. Both establish a search space and select strategies
accordingly. Mutation-based approach modify specific code
sections for SPG. Conversely, the semantic code search seeks
to identify code segments that are semantically similar but
non-vulnerable code segments as potential solutions.
A. Mutation-Based Approach. This approach focus on mod-
ifying operations within a designated statement at a specified
patch location, primarily by transforming the program’s AST.
Mutations at the chosen repair site, involve alterations to
operators, variables, APIs, and operation types within the
AST. These mutations fall into two categories: random muta-
tion, where changes are applied randomly, and pattern-driven
mutation, guided by predefined patterns or rules.

A1. Random Mutation. Random mutation introduces a level
of randomness during mutation, primarily using genetic pro-
gramming and fuzzing. Genetic programming fundamentally
operates through a cycle of 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛⇆ 𝑡𝑒𝑠𝑡. This cycle con-
tinues until the mutated program successfully passes all test
suites. GenProg [78–81] implements this concept, guided
by the heuristic that “a program containing an error in one
context likely implements correct behaviour elsewhere” [135].
This involves modifying the AST and recombining existing
code snippets through mutation until all test suites are passed.
This technique has demonstrated effectiveness in repairing
vulnerabilities such as buffer overflow and format string is-
sues [78–81]. However, the vast search space often leads to
low-quality patches. To improve this, Tan et al. [41] sug-
gested norrowing the search space by capturing disallowed
modifications (i.e., modifications considered inappropriate or
counterproductive for fixing bugs). However, obtaining “com-
plete” anti-patterns is challenging. Anti-patterns are captured
based on their frequency in bad patches and their rarity in
correct ones. Consequently, patterns that are less prevalent in
bad patches might be omitted.

Apart from genetic programming, fuzzing [136] is another
technique for random mutation. VulnFix [10] employs snap-
shot fuzzing to mutate program states directly while inferring
patch invariants. These invariants then guide the constraints
on the patches, offering a more targeted approach for AVR.

A2. Pattern Driven Mutation. Pattern-driven mutation em-
ploys generalized patterns for modifications, such as adding
null pointer checks, modifying boolean expressions, or altering

arithmetic operations. The mutation patterns address many
issues but may lack proven effectiveness for specific cases.
In contrast, template-guided repair uses templates that have
been proven effective in other fixes. Sapfix [82] employs two
mutation strategies involving statement insertion, specifically
for return null or null check operations. Given that
information leakage is closely tied to control flow [137], Hy-
perGI [83] uses standard operators along with two novel ones
like |if| and |for| to perform control flow-dependent mu-
tations. However, these fixes are performed statically, Durieux
et al. [84] explore the search space of possible patches for
null pointer exceptions with metaprogramming [138], which
analyzes the program’s real-time behavior and selects a re-
pair pattern to mutate based on the current execution context.
Beyond the realm of C/C++ and Java vulnerability repair,
there is a growing interest in fixing vulnerabilities in Solidity,
particularly for DeFi protocols. DeFinery [85] adopts three
employs three operator mutation rules for this, notably without
needing access to test cases or historical transaction data.

B. Semantic Code Search. When code exhibits similar
vulnerabilities in comparable contexts or parallel functions,
analogous patching strategies are often necessary. Since 20%-
50% of large software systems consist of cloned code (i.e.,
code segments that are duplicated or highly similar across
different parts of a software project) [139, 140], and patches
are generally developed for the most recent version [141],
earlier versions often have vulnerabilities that are contextually
similar to these updates. Furthermore, software vulnerabilities
frequently recur across different applications [142]. Conse-
quently, by analyzing the characteristics of existing patches
for known vulnerabilities or studying benign code that lacks
these vulnerabilities, it becomes possible to repair similar
unpatched vulnerabilities. Inspired by patch semantics, this
approach has been applied in Security Patch Transplantation
and Security Patch Generation based on Similarity.

B1. Security Patch Transplantation. Patch backporting is a
key aspect of security patch transplantation [143], adapting
the latest official patches for known vulnerabilities to older
software versions, ensuring both compatibility [144, 145]
and continued security [146]. Tools like SKYPORT [86],
FIXMORPH [87], and TSBPORT [88] are developed for
this purpose. SKYPORT targets web applications, whereas
TSBPORT and FIXMORPH target Linux kernel vulnerabili-
ties. These tools assume that official patches are semantically
consistent across versions, but semantic differences can chal-
lenge automated patching, even when the exact fix location is
known [88]. Another approach within security patch transplan-
tation is to spread fixes across various implementations of the
same protocol or functionality. For instance, PatchWeave [89]
uses concolic execution to find and apply matching symbolic
expressions in different software, enabling the transfer of fixes
to similar issues in diverse environments.

B2. Security Patch Generation based on similarity. Unlike



patch transplantation, vulnerabilities often reappear across
various software systems and functionalities [147]. Thus, his-
torical fixes serve as valuable references for addressing similar
vulnerabilities. The key idea is to identify and apply similar
patches to fix analogous issues. FixMeUp [90] targets faulty
access-control logic in web applications and inserts similar
code where needed. Van et al. [92], match code fragments to
ensure functional properties or explore similar code within
the same program that meets necessary conditions. However,
these repair methods require system interruption during patch-
ing. Later, Xu et al. [91] determine the similarity between
the code to be fixed and the buggy code by comparing the
semantics of the official patches with the vulnerable functions
using program analysis and weakest precondition reasoning.
Takeaway II. Mutation-based SPG uses random mutations that
may not specifically tailored vulnerabilities but effective with clear
patterns. Semantic code search uses related patches as references,
but relies on robust matching. Similarly, similarity-based SPG
explores large search spaces [148] by detecting code similarities,
requiring sound verification (e.g., comprehensive test suites).

Open Problems II.
• SearchSpace Optimization. How can we automatically optimize

the search space and adapt search strategies based on differ-
ent scenarios (e.g., different types of vulnerabilities, different
settings, i.e., across projects or within a project) [41, 78–81]?

• Sparse Vulnerability Patterns. How can we enhance the search
methods for rare vulnerabilities [149], leveraging the unique
properties of these vulnerabilities to guide program synthesis?
Additionally, how can we leverage the unique properties of these
rare vulnerabilities to guide the program synthesis effectively?

• Complex Logic and Structural Changes in Backporting. How
can we effectively backport patches involving complex logic or
structural changes, considering the need to understand intricate
program semantics, handle significant alterations to algorithms
or data structures, and dependencies or contexts that may not
exist in the target version [86–89]?

4.3 Constraint Based
Program constraints are limitations or conditions imposed on
program behavior, inputs, outputs, or data structures [150].
In constraint-based SPG, the key lies in formalizing the con-
structed or extracted constraint that the synthesized patch is
required to satisfy. The methods focus on formal constraint
generation rather than constraint solving [151]. Constraint-
based approaches could be summarized into two main steps:
(i) Extract repair constraints. (ii) Employ constraint solvers or
search for statements that fulfill the constraints. Our discussion
is organized around various methods of the two steps.
A. Constraint Extraction. Constraint extraction involves an-
alyzing the affected code to identify the specific requirements
that any potential patch must adhere to. Constraint extraction
methods can be classified into four approaches.

A1. Static Analysis Driven Constraint Extraction. Utiliz-
ing static analysis could identify constraints related to vari-
ables’ values, their interrelationships, and the function calls
sequences. These identified elements can then be utilized
to generate further constraints. MemFix [93] uses typestate
analysis [152] to track memory object states across branches,
and generate patches for each state. It frames the problem as
an NP-complete exact cover issue [153], focusing on patch-
ing memory vulnerabilities (e.g., double free). However, it is
limited to modifying deallocation statements, excluding con-
ditionals. CONCH [25] employs state propagation, utilizing
CFG to encompass the full call chain for constraint extraction.
This strategy aims to craft patches for Null Pointer Deferences
(NPDs). Chida et al. [96] introduced a method by analyzing
templates to maintain condition consistency with examples to
generate constraints for repairing regex denial-of-service vul-
nerabilities. Symlog [95] employs Datalog-based [154] static
analysis to generate structural constraints directly, effective
across multiple languages due to Datalog’s declarative nature.
However, the above methods only work when the application is
open-source and focuses on source code. OSSPATCHER [94]
assumes closed-source applications with available patches
from open-source code. It employs a variability-aware AST
to derive constraints, such as macro definitions and condi-
tional compilations, and adapts these patches into binary form,
aligning them with extracted constraints.

A2. Symbolic Execution Driven Constraints Extraction.
Symbolic execution [155] executes the program with
symbolic values, enabling the computation of constraints.
Depending on the different objects of focus, different types of
constraints can be computed through symbolic execution via
tools such as KLEE [156]. The most representative method
is to adopt symbolic execution to capture program semantic
constraints that could pass all test cases [97, 98, 101]. Further,
the constraint for memory writes and function calls [102],
the weakest precondition, the extension of crash-free con-
straints [9] could also be computed by symbolic execution. To
achieve better path coverage, concolic execution [157], which
employs concrete input to drive symbolic execution, is also
utilized to traverse the path driven by path constraints [99].

A3. Dynamic Analysis Driven Constraints Extraction. Dy-
namic analysis extracts runtime constraints by observing pro-
gram behavior and potential vulnerabilities during execution.
NOPOL [104] collects runtime data during test case execution
to analyze the program behavior, identifying relevant variables
and expressions, and encoded into a Satisfiability Modulo The-
ory (SMT) problem [158]. However, this method relies heavily
on test suites quality, and most of the time, vulnerabilities
may only have one exploit. To address this, ExtractFix [9]
generates patches that generalize beyond a single exploit trace.
Specifically, it adopts sanitizers [159, 160] to convert vulnera-
bilities into normal program crashes, allowing the extraction
of precise condition constraints at the crash point.



A4. Formal Methods for Constraints Extraction. Formal
methods use mathematical techniques and theories to ver-
ify and prove software correctness [161]. These methods
involve constructing mathematical models that describe the
behavior and properties of a program, allowing for the defi-
nition of precise constraints that the software should satisfy.
VULMET [91] employs the weakest precondition reasoning
to transform known patches into constraints. VulnFix [10] de-
rives repair constraints via inductive inference [162]. VulnFix
begins by collecting program state snapshots at vulnerabil-
ity location during benign and vulnerable executions, then
use Daikon [163] to infer initial invariants that distinguish
benign states from vulnerable ones and CVC5 [164] verifies
and refines these invariants to enhance the accuracy. Unlike
approaches dependent on symbolic and concolic execution,
these methods scale better to larger programs. Additionally,
vulnerabilities not only exist in the code, but also stem from
higher-level abstractions, like Trigger Action Programming
(e.g., turn off lights when idle may conflict with a rule to keep
them on), where logical inconsistencies or design flaws can
introduce security risks. TAPFixer [26] detects rule conflicts
via model checking [165] and resolves them using Negated-
Property Reasoning, which analyzes violated properties to
generate fixes such as adding delays, modifying conditions.

B. Patch Generation Based on Constraints. After extracting
repair constraints, two typical methods for generating patches
emerge. The first involves synthesizing a patch by finding a
solution that ensures correct behavior andavoids the vulnerable
state, typically using a component-based program synthesis
approach. The second method involves searching the codebase
for code that meets these constraints.

B1. Component-based Patch Synthesis involves selecting
and combining predefined components (e.g., variables, opera-
tions) to automatically generate patches that satisfy expected
behavior, typically using SMT solvers. The choice of SMT
solvers depends on the constraint features and problem objec-
tives. General-SMT solvers, like Z3 [166], are widely used in
current research and applications, as evidenced by their use in a
variety of works [9, 93–95, 97–99, 102, 104], in which [94] im-
plement source-to-binary matching. For example, in strcpy
function [167], a buffer overflow occurs if the source param-
eter is larger than destination. To prevent this, a constraint
ensures length(source) <= length(destination).

Besides checking the satisfiability of logical formulas over
one or more theories, SAT [168] solvers handle Boolean logic
satisfiability checks. Gopinath et al.[169] translate the con-
straint 𝑝𝑟𝑒 − 𝑠𝑡𝑎𝑡𝑒∧ 𝑐𝑜𝑑𝑒 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠∧ 𝑝𝑜𝑠𝑡 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 into
boolean logic and solved by SAT solver.

However, when multiple patches meet the constraints using
first-order logic, a second-order solver [170] enhances patch
quality. For instance, EXTRACTFIX [9] employs pMaxSMT
(partial MaxSAT) to handle both hard and soft constraints,
while DirectFix [101] transforms the patch generation task

into a pMaxSAT problem, using patch complexity as a soft
constraint. This approach helps produce simpler patches.

B2. Search Codebase For Patch Synthesization. Unlike
component-based patch synthesis, this approach searches
codebase for existing code that satifies extracted constraints,
bypassing the need to reassemble code components within
the project [96]. More details are elaborated in Section 4.2.
Takeaway III. Constraint-based SPG excels in capturing precise
vulnerability requirements and program-wide properties, ensuring
fixes satisfy specified invariants or constraints. Unlike heuristic
methods, this approach is particularly effective for vulnerabilities
requiring rigorous analysis of safety properties.

Open Problems III.
• Vulnerability-Specific Constraints. High-quality constraints

are the key to constraint-based SPG (e.g., [94–96]), because
it defines the properties that must hold true or false for re-
paired code. An open problem is how to accurately infer and
differentiate between “benign” constraints and those specific
to vulnerabilities.

• Security Specification Generation. Constraints can be con-
sidered a concretization of the specification, further refined to
guide the implementation and operation of the system. However,
specifications are often incomplete or underspecified [171],
leading to ambiguity in the constraints to be enforced. Thus,
an open challenge is to develop methods for inferring detailed
specifications from existing code, textual information, etc. that
can then be used to guide the constraint generation process.

4.4 Learning Driven
Learning-driven SPG aims at utilizing learning methods to
perform end-to-end security patch generation. Although in
general bug repair, learning methods have been used to rank
patches [172–175], extract templates for patch generation [176,
177], and end to end patch generation [94, 178–184], their
application in AVR remains primarily limited to SPG.

Learning-driven SPG methods encompass Training, Fine-
tuning, Prompt Engineering, and LLM Integration, with the
latter three relying on large (code) language models. These
models include encoder-decoder models that transform an
input sequence 𝑥 = (𝑥0, 𝑥1, ..., 𝑥𝑇 ) into a corresponding output
sequence; decoder-only models for next token prediction; and
infilling models that generate contextual missing segments.
A. Training. Training involves building a model from scratch.
In SPG, deep learning is particularly favoured for this purpose.

A1. Deep Learning. In deep learning, Neural Machine
Translation (NMT) becomes fundamental for SPG. It utilizes
encoder-decoder architectures, often using RNNs or transform-
ers, learn mappings between source and target code sequences.
For instance, Seqtrans [12] and VRepair [13] utilize NMT to
learn rules from historical fixes (including vulnerability fixes
and bug fixes) and apply them to future edits. Additionally,



Harer et al. [105] tackle vulnerability repair using adversarial
learning with Generative Adversarial Networks [11]. They
utilize an NMT model as the generator within the GAN frame-
work, enabling training without paired examples of code.
B. Fine-tuning. Fine-tuning involves adjusting a pre-trained
model to suit a specific task or domain. Since these models are
not immediately suitable for AVR, significant customization
and re-training are necessary to make them effective.

B1. Adaption. One method forfine-tuning is adaption,which
focuses on adapting knowledge from one domain to another.
Given the limit dataset for vulnerability fixes, the similarity
between vulnerability fixes and bug fixing prompts the use of
bug-fix datasets for pre-training [12, 13, 118, 185]. However,
self-trained models on bug-fixing datasets often fail to capture
rich programming features [50]. Some pre-trained models,
trained on large codebases, can be fine-tuned to effectively
address vulnerabilities. For example, VULRepair [106] fine-
tuned pre-trained Programming Language models for SPG.

B2. Interaction. Fine-tuning can also involve learning
through environmental interaction, i.e., reinforcement learn-
ing [186]. To ensure syntactic and semantic consistency, Islam
et al. [107] used CodeBLEU [187] score and BERTScore [188]
as rewards, guiding fine-tuning with Proximal policy optimiza-
tion [189] to fine-tune CodeGen2 model [190] for SPG.
C. Prompt Engineering. Prompt engineering guides LLMs to
produce optimal SPG outputs through designed inputs, encom-
passing Zero-shot, Few-shot, and Chain-of-thought prompting.

B1. Zero-shot prompting. Zero-shot prompting involves
providing prompts without labeled data. A line of re-
search [14, 15, 108–112] explores the capability of zero-
shot AVR with different LLMs, including Codex [191],
CodeT5 [192], GPT-4 [193], CodeGen2 [190] etc. Among
these, Pearce et al. [15] combine error messages from static
analysis tools in the prompts, NAVRepair [110] combines
AST node-type information and error types in prompts, Liu et
al. [111] combines CWE-ID, vulnerability location, root cause
in prompts to guide SPG. Beyond software bugs, Ahmad [109]
constructs prompts to fix hardware vulnerabilities.

B2. Few-shot prompting. Few-shot prompting uses a few
labeled examples. VQM [113] provide example fixes of the
CWE and data augumentation for repair. Though previously
Fu et al. [16] tested gpt-3.5-turbo and gpt-4 with three
repair examples per prompt and found that it failed to generate
correct patches for all vulnerable functions in their dataset.

B3. Chain-of-thought prompting. Chain-of-thought (CoT)
prompting improve LLMs’ logic-based task performance by
simulating human reasoning, which address the limitations
of other prompting methods in improving reasoning capa-
bilities. Nong et al. [114], Khan et al. [115], VRpilot [117],
and ContractTinker [116] utilized CoT to break down AVR
process into different reasoning steps (e.g., identify vulnera-
bility types, vulnerability causes analysis), all finally integrate

the results from previous reasoning results to guide SPG for
these vulnerabilities. Also, VRpilot specify “the fix should
not break any functionality of the function” in the prompt.

D. LLM Integration Approaches. LLM integration ap-
proaches enable collaboration between LLMs and other tools
beyond pure prompting to enhance AVR performance.

D1. Multi-LLM Collaboration. To overcome the incom-
pleteness in single model approaches, VulMaster [118] lever-
ages two LLMs - CodeT5 as the fine-tunable backbone model
and ChatGPT as the supplementary model for generating CWE
examples and fixes, doubling the repair accuracy compared to
approaches that rely solely on fine-tuned CodeT5.

D2. LLM-External Tool Collaboration. To enhance LLMs’
ability to understand vulnerabilities (e.g., counterexamples),
they are integrated with external tools. ESBMC-AI [119] uses
bounded model checker ESBMC [194] to locate vulnerabilities
and generate counterexamples (including stack traces, line
numbers, and variable names), then feed the counterexamples
and original code into LLMs for SPG, and iteratively verifies
and refines the fixes through ESBMC until the code passes
the verification. VRPilot [117] integrates external tools output
(e.g., code sanitizers) into the prompt to guide SPG.
Takeaway IV. Learning-driven methods have transformed AVR
by: (1) moving beyond traditional heuristic approaches and tem-
plates; (2) improving generalizability and offering more flexibility
in inputs through fine-tuning, prompt engineering, and LLM inte-
gration approaches. Especially, prompts that provide contextual
information (e.g., root causes) guide LLMs to generate more
precise patches (e.g., [117]); (3) LLM integration approaches
enable complementary capabilities (e.g., different models and
tools) to work together for precise analysis and iterative SPG,
enhancing robustness.

Open Problems IV.
• Component Dependency Analysis and Integration. Improving

SPG requires analyzing complex program dependencies and
their security implications ((e.g., [15, 110, 111, 117])). This
includes: (1) understanding multi-component interactions like
API calls and structure definitions, (2) tracking inter-procedural
data flows, and (3) validating dependencies against security
specifications. Thus, developing multimodal methods to analyze
these may lead to more accurate, contextually informed repairs.

• Common Challenges in Learning-based Security Analysis.
Common problems like data sparsity, input length limitations,
and training data availability in learning-based security anal-
ysis are even more challenging in AVR. For example, while
fine-tuning has proven effective in AVR, the lack of high-quality
vulnerability repair datasets(e.g., [106])—comprising not only
official patches but also semantically equivalent patches and
clear evaluation metrics—remains a significant hurdle.

• Generated Security Patches Selection. In non-deterministic
models like GPT-4, automatically validating and selecting the
correct security patch from inconsistent outputs remains chal-
lenging. Unlike general bug fixes, security patches require



Table 2: Evaluation results on C/C++ Vulnerability Benchmark. This table presents data in the format: Successful Repairs / Tests
Passed / Successful Compilations / Total Tests Conducted (RSR). ‘NA’ means the tool is not applicable to the benchmark.

Benchmark #SARD #ExtractFix #VulnLoc
Senx [58] N/A 2/2/6/30(6.7%) 4/4/8/43(9.30%)

VulnFix [10] N/A 13/13/19/30(43.33%) 20/20/28/43(46.51%)
ExtractFix [9] N/A 21/21/25/30(70.00%) 16/16/18/43(37.21%)
VRPilot [117] N/A 17/17/22/30(56.67%) 18/18/25/43(41.86%)
InCoder [205] 79/97/120/1000(7.90%) 0/2/5/30(00%) 0/3/7/43(00%)

Gemini-Pro [206] 121/153/971/1000(12.10%) 1/1/25/30(3.33%) 0/0/32/43(00%)
GPT-4-1106-preview [193] 966/982/1000/1000(96.6%) 14/14/20/30(46.67%) 15/15/23/43(34.88%)

Table 3: Evaluation results on Java Vulnerability Benchmark. VJBench-Trans(R):renaming transformation, S: structure change,
R+S: changed by both. Data Format: Successful Repairs / Tests Passed / Successful Compilations / Total Tests Conducted (RSR).

Benchmark #VJBench #VJBench-Trans(R) #VJBench-Trans(S) #VJBench-Trans(R+S) #VUL4J
GPT-4-1106-preview [193] 5/5/20/23(21.74%) 5/5/22/23(21.74%) 5/7/20/23(21.74%) 3/5/20/23(13.04%) 26/30/56/70(37.14%)

VRPilot [117] 6/9/20/23(26.08%) 6/9/22/23(26.08%) 6/8/20/23(26.08%) 5/6/20/23(21.74%) 29/31/53/70(41.43%)
Gemini-Pro [206] 2/2/14/23(8.70%) 2/2/13/23(8.70%) 2/2/14/23(8.70%) 2/2/13/23(8.70%) 7/10/38/70(10.00%)

CodeT5 [192] 0/0/0/23(00%) 0/0/1/23(00%) 0/0/0/23(00%) 0/0/0/23(00%) 2/2/6/70(2.86%)
InCoder [205] 2/2/10/23(8.70%) 1/1/6/23(4.35%) 1/1/5/23(4.35%) 1/1/6/23(4.35%) 6/10/20/70(8.57%)

Fine-tuned-CodeT5 [14] 3/4/17/23(13.04%) 3/3/17/23(13.04%) 3/3/16/23(13.04%) 2/2/18/23(8.70%) 2/10/48/70(2.86%)
Fine-tuned-InCoder [14] 3/4/15/23(13.04%) 3/3/16/23(13.03%) 4/4/16/23(17.39%) 2/2/17/23(8.70%) 6/12/51/70(8.57%)

complex analysis of exploitability and system-wide security
implications, making automated validation methods still insuffi-
cient. This validation process currently relies heavily on human
expertise (e.g., [14, 115]).

• Iterative AVR. Tools feedback incorporation has proven AVR
improvement (e.g., [117, 119]), how can we leverage LLM
integration usages (e.g., LLM multi-agents) with long memories
to enhance it not only limited to statement/function?

5 Benchmark Evaluation

In Sections 3 and 4,we explore AVR advances and evaluate
SPG methods. Here, our goal is to understand their practical
strengths and weaknesses.

5.1 Benchmark Evaluation Setup

Dataset Selection. We benchmark SPG methods by curat-
ing a dataset that spans various languages and weakness
types. After reviewing vulnerabilities with fixes datasets
([9, 14, 27, 195–202]), we strategically select 4 datasets. Our
selection criteria include: (1) prevalence in AVR research, (2)
programming language diversity, (3) mix of synthetic and real-
world vulnerabilities, and (4) real-world vulnerabilities test
cases/exploits availability for verification. Finally, we selected:
(1) synthetic dataset D𝑆𝐴𝑅𝐷 [203] (used in learning-based
AVR evaluation [107, 114, 204]). For our evaluation, we ran-
domly sampled 1,000 samples from this dataset. (2) real-world
Java vulnerabilitiesD𝑉𝑢𝑙4𝐽 (#79) [202],D𝑉𝐽𝐵𝑒𝑛𝑐ℎ (#42) [14]
and its transformations. (3) real-world C/C++ vulnerabilities
D𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑖𝑥 (#30) [9], and D𝑉𝑢𝑙𝑛𝑙𝑜𝑐 (#43) [27], totaling 48
distinct vulnerabilities across D𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑖𝑥 and D𝑉𝑢𝑙𝑛𝑙𝑜𝑐. See
details in Appendix A.

Inclusion & Exclusion Criteria. We evaluate contemporary
AVR approaches, including but not limited to work from
premier conferences. Tools were filtered based on artifact
availability and must be: (1) be publicly available or acces-
sible from authors, (2) executable, and (3) reproducible and
applicable to selected dataset.

Ultimately, we evaluated 10 tools, including property-
guided approach Senx [58], constraint approach ExtractFix [9],
combined approach (search + constraint) VulnFix [10], and
learning-based methods, including code infilling models In-
Coder [205] and CodeT5 [192], their fine-tuned versions [207],
and generative models using prompt engineering, specifically
GPT4-1106-preview [193] and Gemeni-Pro [208], and VRPi-
lot [117] which leverages CoT prompting with error mes-
sages, to ensure the fairness for evaluation, we also applied
GPT4-1106-preview for VRPilot instead of GPT-3.5-turbo
as claimed in their paper. The experimental settings, tools
applicability, and evaluation steps please refer to Appendix B.
Evaluation Metrics. We evaluate the capability of SPG
methods by measuring their repair success rate (RSR):

𝑅𝑆𝑅 =
Number of Vulnerabilities Successfully Repaired
Total Number of Vulnerabilities to be Repaired

(1)

Note that for non-deterministic models, we generate 3 out-
puts for each input; as long as one of them passes the test, we
include it in the calculation.
Evaluation Results. Tables 2 and 3 show the number of
successful repairs, oracle (tests/exploits) passed, successful
compilations, and total test counts. These metrics, along with
RSR, highlight failure stages for each benchmark. We fil-
tered Java datasets1 due to learning methods’ limitations with
multi-file modifications, retaining 23/42 vulnerabilities in

1If the same modification is applied across different files, we still count it
as a single modification.



D𝑉𝐽𝐵𝑒𝑛𝑐ℎ and 70/79 vulnerabilities in D𝑉𝑢𝑙4𝐽 . All real-
world C/C++ benchmarks were kept since they could be tested
on non-learning methods.

5.2 Highlighted Findings
As shown in Table 2 and Table 3, AVR performance varies sig-
nificantly across benchmarks. GPT-4-1106-preview excelled
on D𝑆𝐴𝑅𝐷 with an RSR of 96.6%. However, its effectiveness
dropped below 50% in other benchmarks, highlighting its
limitations with real-world vulnerabilities. Other learning-
based models had RSRs under 20%. In contrast, VulnFix and
ExtractFix handled real-world scenarios better, though their
RSRs were not exceed 70%. Senx, limited to three vulnera-
bility types, resulting in a low RSR on diverse benchmarks.
Additionally,while VRPilot demonstrates improvedRSR when
integrated with external tool outputs, its performance remains
below that of non-learning-based methods.

Learning-based methods show higher compilation rates than
RSR but struggle with actual vulnerability fixes. For instance,
on D𝑉𝑢𝑙4𝐽 , GPT-4-1106-preview compiled 56 patches with
30 passing test cases but only 26 correctly fixed vulnerabilities,
highlighting insufficient test coverage. Despite improvements
in compilation (0 to 17 compilable patches in D𝑉𝐽𝐵𝑒𝑛𝑐ℎ)
with fine-tuned models (e.g., fine-tuned CodeT5), successful
repairs remains low (0 to 3).

Due to insufficient repaired samples inD𝑉𝐽𝐵𝑒𝑛𝑐ℎ for mean-
ingful comparisons, we applied 3 mutation strategies: variable
swapping, condition reconstruction, and loop transformation
(Appendix C) on D𝑆𝐴𝑅𝐷 with 200 random samples, still in
high RSRs with GPT-4-1106-preview (97.5%, 96.15%, and
96.43% respectively).
Finding I. SPG methods show varying effectiveness across
benchmarks with no consistently dominant approach. The robust-
ness of learning-driven method in our evaluation is excellent.
Iterative LLM-external tool integration enhances AVR.

Open RQ I. How can we improve learning-based methods to
maintain high compilation rates while ensuring functional con-
sistency and enhancing security? Given commonly used RSR only
measure the proportion of successful repairs, how can we develop
comprehensive evaluation metrics that better reflect the real-world
effectiveness (e.g., also consider the vulnerability severity)?

Table 4: Successful repairs by Scope of Change and Code
Dependencies on D𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑖𝑥 and D𝑉𝑢𝑙𝑛𝑙𝑜𝑐, SH: Single-
hunk, MH: Multi-hunk, Intra/Inter/Other: corresponding
dependencies

Tool
Factors Scope of Change Code Dependencies

SH MH Intra Inter Other
VRPilot 13/25 9/23 8/15 7/23 7/10
GPT-4-1106-prev 11/25 8/23 8/15 5/23 6/10
ExtractFix 15/25 6/23 8/15 10/23 3/10
VulnFix 12/25 8/23 6/15 10/23 4/10

To understand which changes make vulnerabilities more
likely to be repaired, we examine the following dimensions:
Scope of Change, and Code Dependencies. Since benchmark
D𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑖𝑥 and D𝑉𝑢𝑙𝑛𝑙𝑜𝑐 feature a broad application of var-
ious methods, our analysis primarily focuses on it. Scope of
Change refers to the number of modified code blocks, cat-
egorized into single-hunk (modifications confined to one
contiguous code block) and multi-hunk changes (changes
across multiple separated blocks). Code Dependencies are an-
alyzed at three levels: intra-procedural dependency (fixed
entirely within a single function or method, without needing
to involve other components or functions.), inter-procedural
dependency (modifications within the vulnerable function
involve components outside of this function), and others (e.g.,
built-in features).

Table 4 indicates minimal impact of scope of changes on
repair success across methods. VRPilot shows worse perfor-
mance (RSR 30.43%) with inter-dependencies compared with
ExtractFix and VulnFix.
Finding II. “Scope of changes” is not a reliable metric to
indicate the difficult level of AVR (although commonly used to
assess the difficulty of repairing general bugs). In contrast, “code
dependencies” have a more significant impact on RSR.

Open RQ II. How can we enhance the interpretability of
AVR methods across different dimensions (e.g., vulnerability de-
pendencies, statement length, modified tokens and lines, control
structures, and vulnerability logic)?

1 @@ -1632 ,6 +1632 ,13 @@ JPEGSetupEncode (TIFF* tif)
2 " Invalig horizontal / vertical sampling value←↪

");
3 return (0);
4 }
5 + if( td -> td_bitspersample > 16 )
6 + {
7 + TIFFErrorExt (tif -> tif_clientdata , module ,
8 + " BitsPerSample %d not allowed ←↪

for JPEG",
9 + td -> td_bitspersample );

10 + return (0);
11 + }

Listing 1: Patch for CVE-2017-7601, which was not repaired
by learning-based methods but by VulnFix

We further investigated vulnerabilities that could be repaired
by non-learning-based but not by learning-based approaches.
A closer look at the vulnerabilities that learning-based methods
failed to repair reveals complex issues, including intricate con-
trol flow conditions, program dependencies, non-obtainable
structure members, global variables, or specifications. For
example, in Listing 1, the vulnerability is caused by shift
operations with excessively large exponents, which is repaired
by a single-hunk modification. This stems from a lack of in-
put validation for td->td_bitspersample, allowing values
exceeding JPEG specification [209]’s 16-bit limit and causing
integer overflow. VulnFix and ExtractFix can apply the correct
repair by computing correct constraints, e.g., VulnFix could

https://github.com/vadz/libtiff/commit/0a76a8c765c7b8327c59646284fa78c3c27e5490


generate the correct patch invariant at the crash point, which is
further utilized forSPG,while learning-based methods miss de-
tails regarding the specification. However, if such specification
is provided in prompts, GPT-4-1106-preview can correctly
perform the repair. We also analyzed the cases learning-based
methods repaired but non-learning-based methods did not, and
cases that both approaches repaired; see details in Appendix D.
Finding III. Learning-based methods lack a comprehensive
understanding of the entire program, struggling with vulnerabili-
ties involving complex interrelations, atypical constructs, exten-
sive program-wide constraints, or implicit constraints defined in
specifications. In contrast, non-learning-based methods excel by
leveraging the broader program context and computing critical
constraints or invariants.

Open RQ III. How can we systematically identify and extract
vulnerability root causes to generate precise specifications that
guide learning-based repairs? Additionally, how can we inte-
grate contextual dependencies and derive constraints from textual
sources (e.g., specification documents) to enhance AVR?

We analyzed the weakness different methods successfully
fixed, focusing on performance across CWE categories. For
D𝑆𝐴𝑅𝐷 , GPT-4-1106-preview has achieved an RSR 100% in
52/60 CWEs, likely due to the simple contextual information.

Figure 3 shows the repair distribution using learning and
non-learning based approaches of CWE types across all real-
world benchmarks. As shown in Figure 3(a), on each CWE
type, no learning-based method performs better for any CWE.
Specifically, both achieve 100% RSR on CWE-476 (NPDs)
and CWE-189 (Numeric Errors). For example, in the case
of CWE-189, like CVE-2016-10094, a numeric error was
fixed by modifying the comparison from >=4 to >4 in the
code, preventing heap-based overflow. For CWE-476, the
main fix involved adding the necessary null check to prevent
dereferencing null pointers. Figure 3(b) shows that on each
CWE with 2+ samples, the RSR is not greater than 75%.
Note that although some CWEs show high RSR , the limited
number of data points makes it unreliable to draw any strong
conclusions.

Moreover, benchmarks across different programming lan-
guages focus on distinct CWE types, C/C++ benchmarks are
primarily concerned with memory-related, like CWE-119
(Improper Restriction of Operations within Memory Buffer
Bounds), while for Java, due to its garbage collections mecha-
nism, tends to focus more on application-layer vulnerabilities
(e.g., CWE-611, Improper Restriction of XXE Reference).
The diverse application-layer vulnerabilities make it hard to
design non-learning AVR tools for multiple CWEs in Java.
Finding IV. Learning-based AVR methods lag behind traditional
approaches overall, though they excel at specific CWEs. The
performance gap between real and synthetic datasets suggests
synthetic data may inadequately evaluate AVR methods.
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Figure 3: Total vs. (Non-)Learning-Based Repair Counts
Across CWE Categories in real-world benchmarks.

Open RQ IV. Can we establish a comprehensive benchmark
for AVR? While some CWEs show high RSR, limited data makes
strong conclusions unreliable.

6 Future Directions
Based on our literature review (Section 4) and evaluation
(Section 5), we discuss future research directions here.
D1. Hybrid Approaches for SPG. Based on Section 4.4
and Section 5.2, A hybrid approach that combining fuzzing,
program analysis, etc. with LLMs for SPG may presents a
promising direction. For example, while program analysis can
identify critical paths and dependencies, it may struggle with
scalability in large codebases. Here, LLMs can optimize the



search space. This synergy between different techniques can
be integrated into repair process. Also, fine-tuning LLMs with
insights from program analysis may also helpful for context-
aware and precise repair. As discussed in Section 5.2, artifacts
like documentation and bug reports help with in-context learn-
ing. Additionally, LLM could generate constraints or patch
invariants based on the analysis of vulnerable and benign
states. The effectiveness of LLMs for invariant generation has
been demonstrated in recent works [210, 211] but not tried in
AVR yet. Compared to other software security tasks, hybrid
approaches for AVR are more challenging as they must gener-
ate patches that account for dependencies, maintain semantic
consistency, and avoid introducing new vulnerabilities.
D2. Domain-Specific AVR. As discussed in Section 3, while
logic vulnerabilities receive less attention, they can be more
severe, as privacy handling flaws may lead to data breaches and
significant losses. General-purpose AVR tools often struggle
with logic vulnerabilities due to their intricate logic,which may
involve subtle design flaws or complex program behavior that
isn’t as straightforward to detect or repair as memory-related
issues. Developing domain-specific methods for logic vulner-
ability repair, incorporating domain-specific languages, for-
mal specification, and security properties and multi-modality
information, is the foundation for reliable patches in domain-
specific AVR (e.g., TAPFixer [26]).
D3. AVR Benchmarks. While numerous datasets on vulnera-
bilities and their fixes exist (Table 5), most lack context and
exploits. Current AVR datasets (Section 5.2) have limited
CWE coverage. AVR needs comprehensive benchmarks with
vulnerable code, patches, working exploits, and reproducible
test environmentsm, challenging to create and maintain.
D4. Interpretability of AVR. As discussed in Section 5.2,
current AVR methods, especially learning-based ones, lack in-
terpretability regarding which vulnerabilities are easier/harder
to repair. Simple metrics like changed hunks or lines provide
limited insights. More comprehensive metrics (control flow
complexity, data flow changes, statement length) are necessary
to improve interpretability of AVR performance.
D5. Automatic Generation of High-quality Specifications.
As discussed in Section 4, specifications are essential for ex-
tracting security properties and constraints. Section 5.2 further
demonstrates that integrating more detailed information about
vulnerable program points can enhance prompt engineering
in learning-based methods, thereby increasing RSR. These
insights highlight the need for better security-related specifi-
cations, as they define what constitutes a secure state and are
crucial for enhancing the effectiveness of AVR. For example, in
software documentation, security properties might be spread
across different sections, using LLMs/NLP and automated
reasoning techniques to extract and find potential violations
may lead to security specific specifications.
D6. Verifier for Generated Security Patches. As discussed in
Section 4, existing approaches still need human intervention in

SPV. When the search space is large (e.g., LLMs can generate
multiple patches) potentially including a correct one. Also,
incorrect patches can turn non-exploitable bugs into severe
vulnerabilities[212] (e.g., the commit[213] fixed a memory
leak but introduced a new double-free vulnerability). To this
end, we advocate for further developments in patch verification
methods to improve AVR efficiency, which may related to
formal verification techiniques.
D7. LLM In AVR. With the advancements in LLMs, LLMs
might be used in any stage (VL, SPG, SPV) of AVR. As
discussed in Section 2 and Section 4, currently, the use of
LLMs in these areas is mostly limited to analyzing the code
itself or incorporating a small amount of vulnerability-specific
information like vulnerability types. However, since LLMs are
prone to hallucination which may lead to inaccurate outputs,
LLMs for AVR cannot solely rely on the LLMs’ capabilities
themselves. It is crucial to integrate them with traditional
complementary techniques. For VL, LLMs can help filter
relevant statements from dependency graphs in slice-based
VL (discussed in Section 2), reducing noise and improving
the precision of the analysis. Moreover, LLMs can assist
counterexample generation by generating inputs that expose
differences in predicates thay may correlate with crashes.
These counterexamples help rank predicates based on their
likelihood of being root causes, improving the precision of
localization. For SPG, as discussed in D1, LLM can be inte-
grated with other techniques and further for patch synthesis
in SPG. For SPV, though currently LLMs have been used for
self-correction or self-checking [214], these approaches alone
cannot prove correctness. However, LLMs can serve multi-
ple roles in enhancing verification approaches. First, LLMs
can extract semantic properties and security invariants from
patches, which can then be formally encoded as verification
conditions for automated theorem provers or model checkers.
Second, LLMs can assist in translating patches into interme-
diate verification languages or logical formulas that are more
amenable to automated reasoning. Third, when verification
fails, LLMs can help analyze counterexamples generated by
theorem provers and suggest refinements to the verification
conditions or patches. This combination leverages LLMs’
natural language understanding and code analysis capabilities
while relying on the mathematical rigor of automated rea-
soning for formal verification, making SPV more robust. In
whole AVR process, LLM agents serve to decompose complex
repair tasks into actionable steps, interact with vulnerability
analysis, and maintain critical context including code structure,
repair history, etc. to facilitate effective AVR. Please refer to
Appendix E for more future directions.

7 Conclusion
We present an SoK concerning SPG in AVR, including a
comprehensive taxonomy of their characteristics and trade-offs,
with future research directions theoretically and empirically.
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Appendix

The appendix illustrates more details on the experimental
setting, dataset selection, mutation strategies, security patch
generation artifacts status, and case studies.

A Dataset Selection Details
We selected the vulnerability and fixes dataset from the known
datasets shown in Table 5. In these datasets, only SARD is syn-
thetic data, only VJBench&VJbench-Trans, Vul4J, VulnLoc,
and ExtractFix consist of test suites/exploits, so we select
these datasets as our benchmarks. For D𝑆𝐴𝑅𝐷 , where defects
and fixes are often associated with callee functions, caller
functions’ naming conventions, such as Goodxxx or Badxxx,
may lead LLMs to erroneously transform “good" to “bad".
To address this issue, we implemented an inter-procedural
analysis with a depth of one, embedding callee functions’
bodies and parameters within their caller functions (As
shown in Figure 4).

Table 5: Vulnerability & Fixes Dataset Details
Name Programming Language 1 Data Type 2 CWE 3 Total 4 Patch 5 Test Suites/Exploit 6

SVEN[197] Python&C R 9 1,606 " %

CVEfixes[198] >30 R 209 5,365 " %

SARD[195] C/C++ S 60 25,297 " %

Big-Vul[200] C/C++ R 91 3,754 " %

CrossVul[196] >40 R 161 5,131 " %

Vulas[199] Java R NA 624 % %

VJBench&VJBenchTrans[14] Java R 23 42 " "

Vul4J[202] Java R 23 79 " "

VulnLoc[27] C/C++ R 12 43 " "

ExtractFix[9] C/C++ R 11 30 " "

SecBench[215] >20 R 51 676 % %

1 Programming Language: Indicates the types of programming languages covered
by each dataset.

2 Data Type: ‘R’ stands for real-world vulnerability and ‘S’ signifies synthetic data.
3 CWE: The number of CWE covered by the dataset. ‘NA’ signifies data not provided.
4 Total: The total number of entries or cases in the dataset.
5 Patch: Indicates whether patches are included in the dataset ("/%).
6 Test Suites/Exploit: Whether test suites or exploits are available ("/%).

B Experimental Setting Details

Experimental Environment Settings. Our experiments were
conducted on Ubuntu 22.04.1 X86_64. To handle the varied
dependencies needed for reproducing vulnerabilities, we em-
ployed Docker for consistent environments. We used GPT-4
and Gemini-Pro APIs and used CodeT5 and InCoder models
and their fine-tuned models as Wu et al. [14]. We used Joern

01 void bad()
02 {
03 char * data;
04 data = NULL;
05 data = new char;
06 *data = 'A’;
07 delete data;
08 printHexCharLine(*data);
09 }

01 void bad()
02 {
03 char * data;
04 data = NULL;
05 badSource(data);
06 printHexCharLine(*data);
07 }
08 void badSource(char * &data)
09 {
10 data = new char;
11 *data = 'A’;
12 delete data;
13 }

callee

(a) Example for SARD dataset with the 
root cause of vulnerability in callee function

(b) Refactored bad function

Figure 4: Inter-procedural processing for D𝑆𝐴𝑅𝐷

(v2.0.110) [216] forD𝑆𝐴𝑅𝐷 preprocessing, CodeQL (v2.15.1)
to detect remaining weakness.
Tools Applicability. Note that not all methods are applicable
across benchmarks due to varying requirements (e.g., pro-
gramming language) and target datasets. For instance, Vulnfix
and ExtractFix require exploits, VRPilot needs exploit/test
case feedback – these weren’t used on the synthetic dataset.
CodeT5 and its fine-tuned model were applied to Java only,
as their training data lacked C/C++ datasets [207].
Evaluation Steps. We assessed the generated patches correct-
ness through a three-step process. First, we checked compila-
tion success. Second, we used an oracle mechanism: patches
for vulnerabilities with existing tests (all real-world vulner-
abilities) were verified against those tests, while synthetic
data (D𝑆𝐴𝑅𝐷) were checked using CodeQL [217]. Finally, all
filtered patches were manually reviewed for semantic equiv-
alence, functionality integrity, and absence of new vulnera-
bilities. To reduce subjectivity, two authors independently
reviewed 200 randomly selected patches, achieving an agree-
ment rate of 96.5% and a Cohen’s kappa of 91.5%.

Input Configuration. For learning-based methods, we
summarized the input configuration from [14, 15, 108, 114]
and the models’ usages. For deterministic models (CodeT5,
InCoder, and their fine-tuned models), we only run them
once; for non-deterministic models (i.e., the models that may
produce different outputs for the same input, including GPT4
and Gemini here), we run them thrice, as long as one of
the generated patches is correct, we regard them as correct.
Especially, the practice prompts are derived from the above
studies, though Nong et al. [114] highlighted the efficacy of
CoT prompting. However, in the step of SPG, its core still lies
in providing LLMs with the weakness information and the
vulnerability location. So we keep providing CWE ID, CWE
Name, and the buggy location for such generative models. For
non-learning-based methods, we deploy the docker or virtual
machine that the authors provided. The detailed input formats
of learning-based methods are shown in Table 6.

C Mutation Strategies
To measure robustness on D𝑆𝐴𝑅𝐷 , we test three mutations:
• Variable swapping: Shuffle variable names within a func-

https://codeql.github.com/


Table 6: Input configuration of learning-based methods
Model Input
GPT-4-1106-preview {“system": “You are a security patch generator. You will be

given a vulnerable code, the CWE ID of it is {CWE_ID},

i.e.,{CWE_NAME}, the buggy line has been commented with

"/*BUG*/"please directly provide the fixed code without any

explanation.", “user": vulnerable function}

Gemini-pro {"system_instruction": "You are a security patch generator. You

will be given a vulnerable code, the CWE ID of it is {CWE_ID},

i.e.,{CWE_NAME}, the buggy line has been commented with

"/*BUG*/"please directly provide the fixed code without any

explanation.", "user": vulnerable function}

CodeT5-large Mask buggy lines with ⟨𝑒𝑥𝑡𝑟𝑎_𝑖𝑑_𝑖⟩and input the vulnerable

function (i depends on the hunks(n) of modified code in the

official patch, from 0 to n). In the input vulnerable function,

also comment on buggy lines.

InCoder-6B Mask buggy lines with and input the vulnerable function, (i

depends on the hunks(n) of modified code in the official patch,

from 0 to n-1 ). In the input vulnerable function, also comment

on the buggy lines.

Fine-tuned
CodeT5

The same with CodeT5.

Fine-tuned
InCoder

The same with InCoder.

tion. For single variables, replace with a random string of
equal length.

• Condition structure reconstruction: Switch if-else
branches, e.g., change if(a) {BlockA} else {BlockB} to
if(!a) {BlockB} else {BlockA}.

• Loop transformation: Transform loop constructs (e.g.,
for, while, do-while) to different structures.

D Additional Case Studies

1 @@ -287 ,7 +287 ,7 @@ fillpattern (int type , unsigned←↪

char *r, size_t size)
2 r[0] = (bits >> 4) & 255;
3 r[1] = (bits >> 8) & 255;
4 r[2] = bits & 255;
5 - for (i = 3; i < size / 2; i *= 2)
6 + for (i = 3; i <= size / 2; i *= 2)
7 memcpy (r + i, r, i);
8 if (i < size)
9 memcpy (r + i, r, size - i);

Listing 2: Patch for Gnubug-26545, repaired by learning-based
methods but not by non-learning based methods

In Listing 2, the off-by-one error occurs due to using <
instead of <= in the loop condition. For even size values, i
could equal size/2, causing early loop exit. Changing to <=
ensures the loop will execute when i equals size/2, fixing
the vulnerability where the buffer wasn’t fully filled under
specific inputs. This vulnerability was not repaired by any
non-learning-based methods because of missing constraints,
whereas learning-based methods could infer from similar
historical fixes.

Listing 3 is a single-hunk fix and only has two lines of code

addition. However, it cannot be repaired by both learning and
non-learning methods. The root of the vulnerability lies in
the reliance on the cached value of td->td_nstrips, which
was originally computed to avoid redundant calculations. This
value is calculated when the strip count is first needed, based
on the image’s length and the rows per strip. However, if the
structure of the image changes afterward in another function,
the cached value becomes outdated, leading to inconsistencies.
The vulnerability emerges because there is no mechanism
to ensure that the cached td->td_nstrips value is updated
when the underlying image structure changes. For learning-
based methods, it has no context, no information about the td
member, and unclear about the root cause of this vulnerability,
so it’s hard to repair. For non-learning based methods, wrong
constraints, and wrong localization lead to no successful repair.
As analyzed in this case, although the change is 2 lines of
code, it still has a complex logic.

1 @@ -5,6 +7 ,15 @@ TIFFNumberOfStrips (TIFF* tif)
2 TIFFDirectory *td = &tif -> tif_dir ;
3 uint32 nstrips ;
4
5 + if( td -> td_nstrips )
6 + return td -> td_nstrips ;
7 +
8 nstrips = (td -> td_rowsperstrip == ( uint32 ) ←↪

-1 ? 1 :
9 TIFFhowmany_32 (td -> td_imagelength , td ->←↪

td_rowsperstrip ));
10 if (td -> td_planarconfig == ←↪

PLANARCONFIG_SEPARATE )

Listing 3: Patch forCVE-2016-9273,which was not repaired by
both learning-based methods and non-learning based methods

E Future Directions

D8. Vulnerability Repair for Binaries. As we discussed
in Section 3, most SPG focuses on source code-level fixes,
which poses several limitations: (1) It requires access to the
original build environment, which may be unavailable for
older applications. (2) Developers may delay patching vulner-
abilities in third-party libraries [77]. (3) Managing complex
configurations and build options of open-source software
is challenging [94]. To implement binary-level vulnerabil-
ity fixes, we advocate integrate current repair methods with
binary-rewriting or CodeLLMs for binary-level AVR.
D9. AVR Tools Usability. AVR can help reduce the workload
of human. But how to better guide the use of the AVR tool
effectively is still a challenging issue. Currently, most AVR
tools are command-line based, which can present usability
barriers for developers. Future research could also explore the
AVR tools usability and develope usable AVR tools, previous
work [218, 219] has stressed the usability of static security
analysis tools but never for AVR tools.
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