
High Performance Approximate Computing by Adaptive Relaxed Synchronization

Bashima Islam∗, Faysal Hossain Shezan† and Rifat Shahriyar‡

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

Dhaka, Bangladesh

bashimaislam@gmail.com∗, faysalhossain2007@gmail.com†, rifat@cse.buet.ac.bd‡

Abstract—Approximate computing has the potential to pro-
vide approximate results with user defined error bound faster
than conventional computing. Relaxed synchronization is one
of the many ways to achieve approximate computation. Re-
searchers in this area primarily focus on programming lan-
guages like C/C++, but languages like Java are still largely
overlooked. In Java, generally full synchronization can be
achieved by using synchronized keyword for method and block
level or by using various locks of Java concurrency utilities
framework. We provide a detailed performance evaluation
of these different mechanisms to achieve full synchroniza-
tion in Java. We introduce an adaptive locking mechanism
using existing locks of Java concurrency utilities framework
to provide relaxed synchronization for Java to be used for
approximate computing. Our novel relaxed synchronization
based framework achieved one of the important outcomes of
approximate computing, better performance.

Keywords-Approximate Computing; Java; Concurrency;
Synchronization;

I. INTRODUCTION

Computers were first designed to solve problems by

calculating precisely. Though for any program accurate

result is considered to be an obligatory feature, achieving

precise outcome sometimes requires significant computing

resources. Runtime or execution time is generally considered

the most rational estimate of performance. However, in

domains like big data, data analysis, image processing,

we can trade-off between accuracy and performance as

there are possibilities of not requiring precise computation.

Nowadays, many applications in these domains are being

designed to use statistical and probabilistic methods for

computing approximate output from noisy input. Reduced

runtime implies better performance, but is a critical goal

to achieve. Accepting approximate result rather than the

accurate one is taking one step closer to this goal. For

example, in a face recognition system, it is very common

to consider 70-80% similarity as the match. In this case, we

can afford a small error because 100% accuracy is not a

requirement. To illustrate, let us consider that two images

of 128 pixels are compared to do a face recognition. If 100

pixels of the test image matches with the reference image

we consider it as a match, we do not need to match all

128 pixels. Compromising accuracy here does not affect the

outcome but it reduces the runtime as some pixels are not

being compared.

Multi-core processors are widely used across many appli-

cation domains. Performance requirements are the primary

reason for shifting to multi-core processors. To enable any

application for multi-core systems, there must be a reliable

way to find and eliminate race conditions. To avoid race

conditions, access to shared resources and memory must

be synchronized. Synchronization is a mechanism which

ensures that two or more concurrent processes or threads do

not simultaneously execute some particular program segment

known as the critical section. Several researchers are relax-

ing synchronization to introduce approximation in multi-core

systems. The errors generated by relaxing synchronization

imposes a very little effect on overall outcome due to the

characteristics of such systems.

The researchers have concentrated mainly on program-

ming languages like C, C++ for approximate computing.

Languages like Java are often ignored to support approxi-

mate computation. In Java, synchronization is achieved by

synchronized keyword as well as various locks provided by

Java concurrency utilities framework. We have developed an

adaptive model of relaxed synchronization for approximate

computing by utilizing these locks where users will define

their desired error level and the system will adapt accord-

ingly. We make the following contributions:

• We introduce a framework for high-performance ap-

proximate computing in Java by relaxing synchroniza-

tion. We propose an adaptive locking mechanism that

will allow users to define their desired error level.

• We perform a comprehensive analysis of the different

full synchronization mechanisms in Java.

• We find two unusual scenarios while using Lock and

Thread class in Java.

• We use our framework for developing an approximate

version of a well-known data structure and compare its

performance.

The remainder of this paper is organized as follows.

Section II gives a brief overview of the related works. In

section III, we provide our detailed analysis of different

synchronization mechanisms in Java. Section IV discusses

the design and implementation of our framework. Section V

describes our experimental methodologies and section VI

2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International

Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems

978-1-5090-4297-5/16 $31.00 © 2016 IEEE

DOI 10.1109/HPCC-SmartCity-DSS.2016.111

1204

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:15:40 UTC from IEEE Xplore. Restrictions apply.

provides our experimental results. Finally, section VII con-

cludes proposing some future works and providing a sum-

mary of our whole work.

II. RELATED WORKS

This section overviews the necessary approximate com-

puting background on which we build.

A. Approximate Computing

Recently a growing number of applications are error-

tolerant due to the flexible requirement of approximate

correctness. Data structures involved in approximate com-

putation can drop some inserted elements or retain some

deleted elements. These do not crash the program rather

produce a state consistent enough to deliver acceptable

output. There have been extensive studies on software

and hardware level approximate computing that trades off

computational accuracy for high performance. Rinard [1]

introduced approximate tree and array building blocks with

associated approximate data structure construction algo-

rithms. Baek and Chilimbi [2] proposed a system named

Green, which enables programmers to approximate expen-

sive functions and loops. Zhang et al. [3] proposed an

approximate computing framework for iterative method and

a quality estimator to provide quality guarantees. The AC-

CEPT framework by Sampson et al. [4] is an auto-tuning

system that automatically chooses the best approximation

strategies and uses a feedback mechanism that helps to

improve for better approximation opportunities. Hoffmann

et al. [5] presented code perforation for trading accuracy in

return for performance. Approximate hardware design can

achieve both energy efficiency and faster execution than the

exact ones. Pekhimenko et al. [6] proposed a recovery-free

hardware/software system design for applying approximate

computing to address the problem of memory latency due

to cache misses.

B. Relaxed Synchronization

Relaxed synchronization is one of the methods to achieve

approximate computing in multi-core systems. Rinard [7]

presented a set of unsynchronized techniques to achieve

approximate parallel computing by eliminating synchro-

nization overhead, parallelism reduction, and failure prop-

agation when a thread fails to execute a synchronization

operation. Renganarayana et al. [8] restructured code of

the identified parallel region and pragmatically selected

profitable degree of relaxation to exploit relaxed synchro-

nization. Gustedt and Jeanvoine [9] tried to control access

to shared or distributed resources using ordered read-write

lock (ORWL) library that works well on multi-core machines

and clusters.

C. Approximate Computing in Java

Most of the works on approximate computing are done

in functional languages like Haskell. Among a few works

in Java, Paleczny et al. [10] presented a locking protocol,

Relaxed-Lock. The Relaxed-Lock uses only one machine

word in the object header and requires only one atomic

compare and swap to lock a monitor, and no atomic in-

structions to release a monitor. Newton et al. [11] presented

an adaptive data structure more scalable and lock-free than

the standard ones while preserving its benefits in Haskell.

They also compared their adaptive data structures with non-

adaptive ones in both Haskell and Java.

III. ANALYSIS

This section provides our detailed analysis on different

synchronization mechanisms in Java with their advantages

and disadvantages. This section also provides some interest-

ing findings related to Java synchronization.

A. Threads in Java

Java provides built-in support for multithreaded program-

ming. Multithreading enables to write efficient programs that

make maximum use of the processing power available in

the system. There are different ways to create a thread in

Java. The most common ones are by extending Thread class

and by implementing the Runnable interface. Another way

of creating threads is using thread pool that is becoming

popular with the programmers. Thread pool is useful to limit

the number of threads running in the application. Instead of

starting a new thread for every task to execute concurrently,

the task can be passed to a thread pool. As soon as the pool

has any idle threads the task is assigned to one of them

and executed. The major benefit of using thread pool is that

the programmers do not need to keep track of the threads,

schedule the waiting threads or assign tasks to the threads.

This makes the job of the programmers easier.

B. Thread Synchronization

Synchronization in Java is an important concept since

Java is a multithreaded language where multiple threads

run in parallel to complete program execution. To avoid

race conditions in multithreaded systems, access to shared

resources and memory must be synchronized. Synchro-

nization is a mechanism which ensures that two or more

concurrent processes or threads do not simultaneously exe-

cute some particular program segment. Synchronization in

Java will only be needed if shared object is mutable. If

the shared object is either read-only or immutable object,

then synchronization is not needed, despite running multi-

ple threads. JVM guarantees that Java synchronized code

will only be executed by one thread at a time. When a

mutable shared object is being updated that portion of the

execution is called critical region and the synchronization

is ensured in this region to avoid any corruption of state

1205

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:15:40 UTC from IEEE Xplore. Restrictions apply.

or any kind of unexpected behavior. Starvation, deadlock,

priority inversion, busy waiting etc. are some of the major

problems caused by the lack of synchronization. The most

common ways of achieving thread synchronization in Java

are synchronized keyword based synchronization and lock

based synchronization. Their performance depends on the

type of programs.

Java synchronized keyword provides different function-

alities essential for multithreaded concurrent programming.

They are: a) synchronized keyword provides locking, which

ensures mutually exclusive access to the shared resource and

prevents data race, b) synchronized keyword also prevents

reordering of code statement by the compiler which can

cause a subtle concurrent issue without the use of syn-

chronized keyword, and c) synchronized keyword involves

locking and unlocking and before entering into synchronized

method or block thread needs to acquire the lock, at this

point it reads data from main memory than cache and when

it releases the lock, it flushes write operation into main

memory which eliminates memory inconsistency errors.

Java concurrency utilities framework provides four types

of Lock. They are: a) Lock, b) ReadWriteLock, c) Reentrant-

Lock, and d) ReentrantReadWriteLock. Lock is the simplest

of them all which can be acquired and released by using a

single variable. In ReadWriteLock, multiple read locks can

be held simultaneously unless the exclusive write lock is

held. ReentrantLock and ReentrantReadWriteLock are like

the previous two with the flexibility to try for a lock without

blocking. Lock provides all the features of synchronized

keyword with different ways to create different conditions

for locking, providing time out for a thread to wait for the

lock. Some of the important methods are lock() to acquire

the lock, unlock() to release the lock, tryLock() to wait for

the lock for a certain period of time.

C. Analysis of Different Multithreaded Workers

We examine the execution of three different multithreaded

workers mentioned in Figure 1. Among these workers,

NoSyncWorker has no synchronization among the threads.

SyncWorker and LockWorker ensure proper synchronization

among the threads. We execute them for a variable number

of threads for 100000 iterations using both Java 7 and 8.

We can see from Figure 2 that NoSyncWorker performs

significantly faster than both SyncWorker and LockWorker

but its accuracy is very low due to lack of synchronization.

That means without any synchronization the accuracy will be

very low but the runtime will be very fast. On the other hand,

with proper synchronization, the accuracy will be perfect but

the runtime will be slower. If we relax the synchronization,

then we can achieve better runtime with the sacrifice of

some accuracy. Our goal is to relax the synchronization to

some extent which will compromise a certain amount of

accuracy but will reduce the runtime hence achieve better

performance.

1 public class NoSyncWorker implements Runnable {

2 private long workCount = 0;

3

4 public void run() {

5 doSomeWork();

6 }

7

8 public void doSomeWork() {

9 //do some work

10 workCount++;

11 }

12

13 public long getWorkCount() {

14 return workCount;

15 }

16 }

(a) Worker without Synchronization (NoSyncWorker)

1 public class SyncWorker implements Runnable {

2 private long workCount = 0;

3

4 public void run() {

5 doSomeWork();

6 }

7

8 public synchronized void doSomeWork() {

9 //do some work

10 workCount++;

11 }

12

13 public long getWorkCount() {

14 return workCount;

15 }

16 }

(b) Worker with Synchronized Keyword (SyncWorker)

1 public class LockWorker implements Runnable {

2 private long workCount = 0;

3 private WriteLock lock =

4 new ReentrantReadWriteLock().writeLock();

5

6 public void run() {

7 doSomeWork();

8 }

9

10 public void doSomeWork() {

11 lock.lock();

12 //do some work

13 workCount++;

14 lock.unlock();

15 }

16

17 public long getWorkCount() {

18 return workCount;

19 }

20 }

(c) Worker with Lock (LockWorker)

Figure 1. Different multithreaded workers

We choose lock over synchronized keyword for our

approximate computing framework due to the following

reasons:

• Though both synchronized keyword and lock ensures

full synchronization, Figure 2 clearly shows that syn-

chronized keyword needs more runtime than lock for

larger number of threads in Java 8. So using lock over

synchronized keyword is more logical for performance.

• It is not possible to tweak synchronized keyword for

relaxed synchronization. It will always provide full

1206

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:15:40 UTC from IEEE Xplore. Restrictions apply.

(a) Java 7 (b) Java 8

Figure 2. Performance comparsion of different multi-

threaded workers

synchronization.

• The ReentrantLock of Java concurrency utilities frame-

work consists tryLock() as shown in Figure 3 which

provides a non-blocking attempt to acquire a lock that

can be interrupted and time out. Our framework for

approximate computing in Java is based on this tryLock

of ReentrantLock.

1 public class TryLockWorker implements Runnable {

2 private long workCount = 0;

3 private WriteLock lock =

4 new ReentrantReadWriteLock().writeLock();

5

6 public void run() {

7 doSomeWork();

8 }

9

10 public void doSomeWork() {

11 if (lock.tryLock(VERY_LARGE_TIME)) {

12 //do some work

13 workCount++;

14 lock.unlock();

15 }

16 }

17

18 public long getWorkCount() {

19 return workCount;

20 }

21 }

Figure 3. TryLock Worker

D. Interesting Findings

We encountered some interesting findings related to thread

creation and synchronization. The findings are listed below:

Unstable behaviour with ReentrantLock. tryLock() and

Thread.sleep(): We tried to use Thread.sleep() to forcefully

suspend threads for some specific amount of time. Using

ReentrantLock.tryLock() and Thread.sleep() together leads

to an unstable behavior related with the number of times the

function is actually called. To illustrate, if the code snippet

of Figure 3 with Thread.sleep() inside tryLock() is called for

100 times this will actually be executed for 80-90 times.

Possible Reasons: From the observation, we can identify

one probable reason. While using synchronized keyword,

waiting for an entry to a busy critical section sends the

thread into the waiting queue. If we use wait() in that

critical section, then it conflicts with the waiting queue.

Hence calling notify() or notifyAll() allows all the threads

into the critical section. This is properly implemented by

checking the entry condition in a tight loop instead of a

simple condition. We assume the similar thing happens with

ReentrantLock.tryLock(). In tryLock() the threads are sent

to sleeping queue instead of waiting queue. So, when we

explicitly use Thread.sleep() for synthetic thread suspension

these threads conflict with the sleeping queue.

Unstable behaviour with ReentrantLock.tryLock() and

creation of new threads: We predicted that extending Thread

class instead of using ExecutorService to create new thread

may resolve the above problem. But if we implement

Runnable or extend Thread class for creating new thread,

ReentrantLock.tryLock() doesn’t work at all, it behaves like

default lock() method.

Possible Reasons: We think this may be a bug and we

will report it.

IV. DESIGN

Our goal is to design and develop a framework which

will allow any data structure to operate approximately. We

choose to use relaxed synchronization to achieve this goal.

We introduce approximate lock, an adaptive tryLock for

approximate computation. When tryLock is used, a thread

does not wait to acquire that lock if the tryLock wait time

has exceeded. Figure 4 represents our AdaptiveWorker where

each thread waits for a given time of the tryLock. If the

waiting time exceeds, the thread skips acquiring the lock.

We adaptively manipulate that wait time for our approximate

lock to achieve user-specific error bound. We see from the

analysis that NoSyncWorker provides faster runtime but very

low accuracy but both SyncWorker and LockWorker provides

perfect accuracy but compromises runtime efficiency. Our

approximate AdaptiveWorker lies in between that achieves

better runtime by compromising accuracy.

A. Design Parameters

The main parameters of our design are described below:

1) Initial Wait Time: At the beginning, we fix the initial

wait time t0 which will be adaptively changed. We perform

several experiments to find out the optimal value of initial

wait time. The performance optimal value of the initial wait

time needs to be a multiple of the time tw required to do the

work in the critical section. So the initial wait time t0 can

be defined as follows:

t0 = tw× ca (1)

Here, ca is a constant. We perform different experiments

with various ca to acquire the performance optimal value of

ca.

1207

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:15:40 UTC from IEEE Xplore. Restrictions apply.

1 public class AdaptiveWorker implements Runnable {

2 private long initialWorkTime;

3 private long adaptiveTime;

4 private long workCount = 0;

5 private WriteLock lock =

6 new ReentrantReadWriteLock().writeLock();

7

8 AdaptiveWorker() {

9 initialWorkTime = calculateWorkTime();

10 adaptiveTime = SOME_CONSTANT * initialWorkTime;

11 }

12

13 public void run() {

14 doSomeWork();

15 }

16

17 public void doSomeWork() {

18 if (lock.tryLock(adaptiveTime)) {

19 //do some work

20 workCount++;

21 updateAdaptiveTime();

22 lock.unlock();

23 }

24 }

25

26 public long getWorkCount() {

27 return workCount;

28 }

29

30 void updateAdaptiveTime(){

31 long error = calculateError();

32 if(error > tolerableError){

33 adaptiveTime += stepTime;

34 } else {

35 adaptiveTime -= stepTime;

36 }

37 }

38

39 long calculateWorkTime() {

40 long startTime = Time.now();

41 //do some work

42 long endTime = Time.now();

43 return endTime - startTime;

44 }

45 }

Figure 4. AdaptiveWorker

2) Step Size: To make wait time of our approximate

lock adaptive, we need to have a variable step size δ t.

The wait time will increase by the amount of step size

when the current error is greater than the user-defined error

and will decrease vice versa. This step size is the most

important design parameters to achieve good performance.

A wrong step size may not reach the user defined error

ever, so a careful selection of the step size is important.

Our experiments guide us that this step size depends on the

time needed to do the work tw and the number of threads

waiting wt .

δ t = tw ∗wt (2)

3) Error Threshold: The user will define an error thresh-

old Et . We are calculating the current error E by the

difference of how many times the work to be done is tried

and how many times the work is actually done. This error

E works as the controlling factor for the adaptive change of

the wait time. If E is greater than Et then the wait time t is

decreased by the step size δ t. If E is less than Et then t is

increased by the step size δ t. In the other hand, if E equals

Et then t remains unchanged.

t = t±δ t (3)

4) Sampling Frequency: Calculating error and updating

wait time incurs a cost at runtime. So the frequency of this

update needs to be controlled. If we execute this update in

each iteration, then the cost of this update will neutralize

the effect of approximate computation. These updates need

to be executed after a certain number of iteration which is

an important parameter of our design. If this number is too

large then the effect of approximate computation will be

too nominal. But if it is too small, the effect of approximate

computation will be neutralized by the actual time needed

for these updates.

B. Main Algorithm

The following pseudocode gives an overview of the

adaptive algorithm of our design. If a thread cannot acquire

the lock within time t then it will not do the work, hence

current error will increase. We control the user defined error

threshold Et by adaptively changing t.

1: procedure WORK-COMPUTE-APPROXIMATE

2: if lock.tryLock(t) then

3: if numberOfIteration%sampleSize == 0 then

4: E← getError()

5: wt ← numberOfWaitingThreads()

6: tw← timeNeededForWork

7: δ t = tw ∗wt

8: if E > Et then

9: t← t +δ t

10: else if then

11: t← t−δ t

12: end if

13: end if

14: // do some work

15: lock.unlock()

16: end if

17: end procedure

V. METHODOLOGY

We use Ubuntu 14.04.1 LTS server distribution and a 64-

bit (x86 64) 3.8.0-29 Linux kernel. We report both analysis

and performance results on a 3.4 GHz, 22 nm Core i7-4770

Haswell with 4 cores and 2-way SMT. The two hardware

threads on each core share a 32 KB L1 instruction cache,

32 KB L1 data cache, and 256 KB L2 cache. All four cores

share a single 8 MB last level cache. A dual-channel memory

controller is integrated into the CPU with 8 GB of DDR3-

1066 memory.

1208

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:15:40 UTC from IEEE Xplore. Restrictions apply.

VI. RESULTS

We implement our designed framework and performed

experiments to verify its correctness as well as performance.

Our design can be integrated with most of the existing

data structures. For our experiment, we use single linked

list, a simple and widely used data structure. In a single

linked list contents are stored in the list as nodes and a

pointer or reference points to the next node in the list.

Single linked list generally supports three major functions

— add, delete and search. We execute this single linked

list for a variable number of threads where each thread

adds/deletes a variable number of nodes to/from the list. For

simplicity, we only consider adding nodes in our experiment.

This add function is the do some work of our approximate

AdaptiveWorker in Figure 4. We can measure the number of

nodes different threads try to add to the list. The length of

the list indicates the number of nodes successfully added.

Using this information, we can calculate the current error.

We perform experiments in various scenarios to check the

accuracy and runtime of our implementation. We vary the

number of threads from 25 to 10000. We vary the value of

the following design parameters to check their effect on the

program: a) Constant ca of initial wait time, b) sampling

frequency, and c) error threshold. Finally, we compare the

result of our implemented framework with synchronized

keyword and lock.

A. Varying ca

We plot runtime vs ca for a various number of threads in

Figure 5, given other parameters are constant. We can see

that for very low value of ca our framework fails to work

as it fails to adjust to the required wait time. From Figure 5

we can conclude that any value between 20 to 50 is a valid

value for ca.

Figure 5. Varying ca with number of threads

B. Varying Sampling Frequency

We plot runtime vs sampling frequency for a various

number of threads in Figure 6, given other parameters are

constant. We can see that for larger sampling frequency

runtime decreases but error controlling fails. From Figure 6,

we can infer that 10−20 is a reasonable choice for sampling

frequency.

Figure 6. Varying sampling frequency with number of

threads

C. Varying Error Threshold

We plot runtime vs error threshold for a various number

of threads in Figure 7, given other parameters are constant.

We can see that with the increase of error threshold, the

runtime decreases. Because by increasing the threshold we

are allowing more errors and that allows less number of

nodes to be added to the list. It validates our assumption

that by compromising a certain amount of accuracy we can

decrease the runtime.

Figure 7. Varying error threshold with number of threads

D. Performance Measurement with Runtime

We plot runtime vs number of threads for SyncWorker,

LockWorker, and our AdaptiveWorker in Figure 8. We can

clearly see that our AdaptiveWorker with approximate lock

achieve better performance than the other two by sacrificing

accuracy in a controlled but acceptable way.

The insights and results suggest that our adaptive framework

based on relaxed synchronization may be fruitful for ap-

proximate computing when the user can accept computation

results with some tolerable error but with faster runtime.

1209

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:15:40 UTC from IEEE Xplore. Restrictions apply.

Figure 8. Final performance result

VII. FUTURE WORK AND CONCLUSION

We propose a framework for approximate computing in

Java with a specific focus on data structures. Currently, our

framework supports single linked list data structure. We

plan to extend it for data structures like doubly linked list,

stack, queue etc. Moreover, we are developing a Java library

which will contain these approximate data structures so that

the programmers can use these easily and efficiently. Our

next step will be make our approximate lock based data

structures more independent. To elaborate, we would like the

compiler to decide whether to use the precise data structures

or the approximate ones based on the characteristics of the

program. This benefits the programmers by eliminating the

hassle of deciding whether to use approximate computation

for a certain program.

Approximate computing opens a new door of possibilities

in the era of modern computing. Relaxed synchronization

in Java can provide approximate results but hasn’t yet

received much attention of the researchers. In Java, built

in synchronized keyword achieves full synchronization but

it costs a lot in performance. In this paper, we propose a

framework that reduces the synchronization overhead of a

program that can accept approximate results. Though it can-

not achieve the full accuracy, we are able to reduce the time

needed to execute the program. As a result, our framework

for approximate computing provides better performance.

Engraving approximate computing in Java will facilitate the

programmers to engulf the flavor of approximation without

taking much hassle.

ACKNOWLEDGMENT

This work is performed as a part of the undergraduate the-

sis in the Department of Computer Science and Engineering

of Bangladesh University of Engineering and Technology

(BUET). Our special thanks to BUET for providing such

a good environment for research activities in the field of

Computer Science and Engineering.

REFERENCES

[1] M. Rinard, “Probabilistic accuracy bounds for fault-

tolerant computations that discard tasks,” in Proceed-

ings of the 20th annual international conference on

Supercomputing. ACM, 2006, pp. 324–334.

[2] W. Baek and T. M. Chilimbi, “Green: a framework

for supporting energy-conscious programming using

controlled approximation,” in ACM Sigplan Notices,

vol. 45, no. 6. ACM, 2010, pp. 198–209.

[3] Q. Zhang, F. Yuan, R. Ye, and Q. Xu, “Approxit:

An approximate computing framework for iterative

methods,” in Design Automation Conference (DAC),

2014 51st ACM/EDAC/IEEE. IEEE, 2014, pp. 1–6.

[4] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip,

L. Ceze, and M. Oskin, “Accept: A programmer-guided

compiler framework for practical approximate comput-

ing,” University of Washington Technical Report UW-

CSE-15-01, vol. 1, 2015.

[5] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal,

and M. Rinard, “Using code perforation to improve

performance, reduce energy consumption, and respond

to failures,” 2009.

[6] G. Pekhimenko, D. Koutra, and K. Qian, “Approximate

computing: Application analysis and hardware design.”

[7] M. C. Rinard, “Unsynchronized techniques for approx-

imate parallel computing,” in RACES Workshop, 2012.

[8] L. Renganarayana, V. Srinivasan, R. Nair, and

D. Prener, “Programming with relaxed synchroniza-

tion,” in Proceedings of the 2012 ACM workshop on

Relaxing synchronization for multicore and manycore

scalability. ACM, 2012, pp. 41–50.

[9] J. Gustedt and E. Jeanvoine, “Relaxed synchronization

with ordered read-write locks,” in Euro-Par 2011:

Parallel Processing Workshops. Springer, 2011, pp.

387–397.

[10] M. Paleczny, C. Vick, and C. Click, “The java hotspot

tm server compiler,” in Proceedings of the 2001 Sympo-

sium on Java TM Virtual Machine Research and Tech-

nology Symposium-Volume 1. USENIX Association,

2001, pp. 1–1.

[11] R. R. Newton, P. P. Fogg, and A. Varamesh, “Adap-

tive lock-free maps: purely-functional to scalable,” in

Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming. ACM, 2015,

pp. 218–229.

1210

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 15,2020 at 07:15:40 UTC from IEEE Xplore. Restrictions apply.

